Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leg Med (Tokyo) ; 63: 102256, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058993

RESUMO

Single nucleotide polymorphisms (SNPs) have become popular in forensic genetics as an alternative to short tandem repeats (STRs). The Precision ID Identity Panel (Thermo Fisher Scientific), consisting of 90 autosomal SNPs and 34 Y-chromosomal SNPs, enabled human identification studies on global populations through next-generation sequencing (NGS). However, most previous studies on the panel have used the Ion Torrent platform, and there are few reports on the Southeast Asian population. Here, a total of 96 unrelated males from Myanmar (Yangon) were analyzed with the Precision ID Identity Panel on a MiSeq (Illumina) using an in-house TruSeq compatible universal adapter and a custom variant caller, Visual SNP. The sequencing performance evaluated by locus balance and heterozygote balance was comparable to that of the Ion Torrent platform. For 90 autosomal SNPs, the combined match probability (CMP) was 6.994 × 10-34, lower than that of 22 PowerPlex Fusion autosomal STRs (3.130 × 10-26). For 34 Y-SNPs, 14 Y-haplogroups (mostly O2 and O1b) were observed. We found 51 cryptic variations (42 haplotypes) around target SNPs, of which haplotypes corresponding to 33 autosomal SNPs decreased CMP. Interpopulation analysis revealed that the Myanmar population is genetically closer to the East and Southeast Asian populations. In conclusion, the Precision ID Identity Panel can be successfully analyzed on the Illumina MiSeq and provides high discrimination power for human identification in the Myanmar population. This study broadened the accessibility of the NGS-based SNP panel by expanding the available NGS platforms and adopting a robust NGS data analysis tool.


Assuntos
Impressões Digitais de DNA , Polimorfismo de Nucleotídeo Único , População do Sudeste Asiático , Humanos , Masculino , Povo Asiático/genética , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Mianmar , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , População do Sudeste Asiático/genética
2.
Forensic Sci Int Genet ; 61: 102778, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36166997

RESUMO

Microhaplotypes (microhaps) are recently introduced markers that aim to complement the limitations of conventional forensic markers such as short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs). With the potential of microhaps in forensics becoming clearer through massively parallel sequencing (MPS), MPS-based studies on microhaps are being actively reported. However, simpler workflow schemes for the generation and analysis of MPS data are still required to facilitate the practical application of MPS in forensics. In this study, we developed an in-house MPS panel that simultaneously amplifies 56 microhaps and a custom haplotype caller, Visual Microhap. The developed tool works on a web browser and provides four analysis options to extract SNP-based haplotypes from sequence-based data obtained by STRait Razor 3.0. To demonstrate the utility of the MPS panel and data analysis workflow scheme, we also analyzed 56 microhaps of 286 samples from four populations (African-American, Caucasian, Hispanic, and Korean). The average effective number of alleles (Ae) for the four groups was 3.45, ranging from 1.74 to 6.98. Forensic statistical parameters showed that this microhap panel is more powerful than conventional autosomal STRs for human identification. Meanwhile, the 56-plex panel mostly comprised microhaps with high Ae; however, the four populations were grossly distinguishable from each other by cluster analysis. Consequently, the developed in-house MPS panel for 56 microhaps and the adopted workflow using open-source tools can increase the utility of microhap MPS in forensic research and practice.


Assuntos
Impressões Digitais de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Haplótipos , Análise de Sequência de DNA , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
3.
Sci Rep ; 11(1): 4701, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633141

RESUMO

The introduction of massively parallel sequencing (MPS) in forensic investigation enables sequence-based large-scale multiplexing beyond size-based analysis using capillary electrophoresis (CE). For the practical application of MPS to forensic casework, many population studies have provided sequence data for autosomal short tandem repeats (STRs). However, SE33, a highly polymorphic STR marker, has little sequence-based data because of difficulties in analysis. In this study, 25 autosomal STRs were analyzed, including SE33, using an in-house MPS panel for 350 samples from four populations (African-American, Caucasian, Hispanic, and Korean). The barcoded MPS library was generated using a two-step PCR method and sequenced using a MiSeq System. As a result, 99.88% genotype concordance was obtained between length- and sequence-based analyses. In SE33, the most discordances (eight samples, 0.08%) were observed because of the 4 bp deletion between the CE and MPS primer binding sites. Compared with the length-based CE method, the number of alleles increased from 332 to 725 (2.18-fold) for 25 autosomal STRs in the sequence-based MPS method. Notably, additional 129 unique alleles, a 4.15-fold increase, were detected in SE33 by identifying sequence variations. This population data set provides sequence variations and sequence-based allele frequencies for 25 autosomal STRs.


Assuntos
Genética Forense , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites/genética , Grupos Populacionais/genética , Eletroforese Capilar , Frequência do Gene , Humanos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único
4.
Electrophoresis ; 41(18-19): 1600-1605, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32725901

RESUMO

DNA analysis of degraded samples and low-copy number DNA derived from skeletal remains, one of the most challenging forensic tasks, is common in disaster victim identification and genetic analysis of historical materials. Massively parallel sequencing (MPS) is a useful technique for STR analysis that enables the sequencing of smaller amplicons compared with conventional capillary electrophoresis (CE), which is valuable for the analysis of degraded DNA. In this study, 92 samples of human skeletal remains (70+ years postmortem) were tested using an in-house MPS-STR system designed for the analysis of degraded DNA. Multiple intrinsic factors of DNA from skeletal remains that affect STR typing were assessed. The recovery of STR alleles was influenced more by DNA input amount for amplification rather than DNA degradation, which may be attributed from the high quantity and quality of libraries prepared for MPS run. In addition, the higher success rate of STR typing was achieved using the MPS-STR system compared with a commercial CE-STR system by providing smaller sized fragments for amplification. The results can provide constructive information for the analysis of degraded sample, and this MPS-STR system will contribute in forensic application with regard to skeletal remain sample investigation.


Assuntos
DNA/genética , Genética Forense/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites/genética , Restos Mortais/química , DNA/análise , DNA/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase Multiplex , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...