Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Clin Chem ; 68(3): 441-449, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34871358

RESUMO

BACKGROUND: Sex differences in high-sensitivity cardiac troponin (hs-cTn) concentrations from healthy populations have led to the establishment of sex-specific upper reference limits for hs-cTn assays. This study assessed the performance of sex-specific delta (i.e., changes in concentrations) thresholds for the hs-cTnT assay for ruling in acute myocardial infarction (AMI) in different emergency department (ED) populations. METHODS: This retrospective study consisted of 2 cohorts (Cohort 1 derivation and Cohort 2 validation). Cohort 1 consisted of 18 056 ED patients who had serial hs-cTnT measured using a 0-h/3-h algorithm at a US medical center, with Cohort 2 consisting of 1137 ED patients with 0-h/3-h sampling at a Canadian medical center. The primary outcome was AMI diagnosis with sex-specific deltas derived based on the Youden index and specificity estimates (i.e., ≥90%) in Cohort 1 and validated in Cohort 2. RESULTS: In Cohort 1, 42% of all patients had 0-h hs-cTnT above the sex-specific 99th percentile. Males had higher 0-h hs-cTnT (median 17 ng/L) and absolute deltas (median 2 ng/L) than females (0-h median 11 ng/L, P < 0.0001; deltas median 1 ng/L, P < 0.0001) in non-AMI patients but not in patients with AMI. For ruling in AMI, the sex-specific delta thresholds based on 90% specificity (14 ng/L for males, 11 ng/L for females) performed best and resulted in 91% diagnostic accuracy in both males and females. The sex-specific delta thresholds yielding high specificity estimates were confirmed in the validation data set. CONCLUSIONS: Sex-specific absolute delta thresholds can be used to rule in AMI and are robust across different study populations.


Assuntos
Infarto do Miocárdio , Troponina T , Biomarcadores , Canadá , Feminino , Humanos , Masculino , Infarto do Miocárdio/diagnóstico , Estudos Retrospectivos
3.
Mol Cell Biol ; 40(18)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32631902

RESUMO

hRpn13/ADRM1 links substrate recruitment with deubiquitination at the proteasome through its proteasome- and ubiquitin-binding Pru domain and DEUBAD domain, which binds and activates deubiquitinating enzyme (DUB) UCHL5/Uch37. Here, we edit the HCT116 colorectal cancer cell line to delete part of the hRpn13 Pru, producing cells that express truncated hRpn13 (trRpn13), which is competent for UCHL5 binding but defective for proteasome interaction. trRpn13 cells demonstrate reduced levels of proteasome-bound ubiquitinated proteins, indicating that the loss of hRpn13 function at proteasomes cannot be fully compensated for by the two other dedicated substrate receptors (hRpn1 and hRpn10). Previous studies indicated that the loss of full-length hRpn13 causes a corresponding reduction of UCHL5. We find UCHL5 levels unaltered in trRpn13 cells, but hRpn11 is elevated in ΔhRpn13 and trRpn13 cells, perhaps from cell stress. Despite the ∼90 DUBs in human cells, including two others in addition to UCHL5 at the proteasome, we found deletion of UCHL5 from HCT116 cells to cause increased levels of ubiquitinated proteins in whole-cell extract and at proteasomes, suggesting that UCHL5 activity cannot be fully assumed by other DUBs. We also report anticancer molecule RA190, which binds covalently to hRpn13 and UCHL5, to require hRpn13 Pru and not UCHL5 for cytotoxicity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Chaperonas Moleculares/metabolismo , Ubiquitina Tiolesterase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Citoplasma/metabolismo , Células HCT116 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/genética , Proteínas Ubiquitinadas/metabolismo
4.
Kidney Blood Press Res ; 44(4): 465-478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31230050

RESUMO

BACKGROUND/AIMS: Acute kidney injury (AKI) is a serious complication of sepsis and has a high morbidity and mortality rate. Caspase-11 induces pyroptosis, a form of programmed cell death that plays a critical role in endotoxic shock, but its role in tubular epithelial cell death and whether it contributes to sepsis-associated AKI remains unknown. METHODS: The caspase-11-/- mouse received an intraperitoneal injection of lipopolysaccharide (LPS, 40 mg/kg body weight). Caspase-11-/- renal tubular epithelial cells (RTECs) form C57BL caspase-11-/- mice were treated with LPS in vitro. The IL-1ß ELISA kit and Scr assay kit were used to measure the level of interleukin-1ß and serum creatinine. Annexin V-FITC assay and TUNEL staining assay were used to detect the cell death in different groups in vitro and in vivo. Western blot was performed to analyze the protein expression of caspase-11 and Gsdmdc1. RESULTS: LPS-induced sepsis results in lytic death of RTECs, accompanied by increased expression of the pyroptosis-related proteins caspase-11 and Gsdmd. However, the increase in pyroptosis-related protein expression induced by LPS was attenuated with caspase-11 knockout, both in vitro and in vivo. Furthermore, when challenged with lethal doses of systemic LPS, pathologic abnormalities in renal structure, increased serum and kidney interleukin-1ß, increased serum creatinine, and animal death were observed in wild-type mice but prevented in caspase-11-/- mice. CONCLUSIONS: Caspase-11-induced pyroptosis of RTECs is a key event during septic AKI, and targeting of caspase-11 in RTECs may serve as a novel therapeutic target in septic AKI.


Assuntos
Injúria Renal Aguda/etiologia , Caspases Iniciadoras/fisiologia , Túbulos Renais/patologia , Piroptose , Sepse/complicações , Injúria Renal Aguda/patologia , Animais , Caspases Iniciadoras/genética , Creatinina/sangue , Células Epiteliais/patologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Genes (Basel) ; 10(2)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678108

RESUMO

BACKGROUND: Trichoplusiani derived cell lines are commonly used to enable recombinant protein expression via baculovirus infection to generate materials approved for clinical use and in clinical trials. In order to develop systems biology and genome engineering tools to improve protein expression in this host, we performed de novo genome assembly of the Trichoplusiani-derived cell line Tni-FNL. METHODS: By integration of PacBio single-molecule sequencing, Bionano optical mapping, and 10X Genomics linked-reads data, we have produced a draft genome assembly of Tni-FNL. RESULTS: Our assembly contains 280 scaffolds, with a N50 scaffold size of 2.3 Mb and a total length of 359 Mb. Annotation of the Tni-FNL genome resulted in 14,101 predicted genes and 93.2% of the predicted proteome contained recognizable protein domains. Ortholog searches within the superorder Holometabola provided further evidence of high accuracy and completeness of the Tni-FNL genome assembly. CONCLUSIONS: This first draft Tni-FNL genome assembly was enabled by complementary long-read technologies and represents a high-quality, well-annotated genome that provides novel insight into the complexity of this insect cell line and can serve as a reference for future large-scale genome engineering work in this and other similar recombinant protein production hosts.


Assuntos
Genoma de Inseto , Lepidópteros/genética , Anotação de Sequência Molecular , Animais , Linhagem Celular , Mapeamento de Sequências Contíguas , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/química , Proteínas de Insetos/genética , Lepidópteros/citologia , Domínios Proteicos , Análise de Sequência de DNA
6.
Cell Rep ; 22(7): 1889-1902, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29444439

RESUMO

KRAS can bind numerous effector proteins, which activate different downstream signaling events. The best known are RAF, phosphatidylinositide (PI)-3' kinase, and RalGDS families, but many additional direct and indirect effectors have been reported. We have assessed how these effectors contribute to several major phenotypes in a quantitative way, using an arrayed combinatorial siRNA screen in which we knocked down 41 KRAS effectors nodes in 92 cell lines. We show that every cell line has a unique combination of effector dependencies, but in spite of this heterogeneity, we were able to identify two major subtypes of KRAS mutant cancers of the lung, pancreas, and large intestine, which reflect different KRAS effector engagement and opportunities for therapeutic intervention.


Assuntos
Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Adenilato Quinase/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
7.
J Appl Lab Med ; 2(4): 640-643, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636893
8.
Crit Rev Clin Lab Sci ; 54(6): 433-445, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28990451

RESUMO

In recent years, the abuse of opioid drugs has resulted in greater prevalence of addiction, overdose, and deaths attributable to opioid abuse. The epidemic of opioid abuse has prompted professional and government agencies to issue practice guidelines for prescribing opioids to manage chronic pain. An important tool available to providers is the drug test for use in the initial assessment of patients for possible opioid therapy, subsequent monitoring of compliance, and documentation of suspected aberrant drug behaviors. This review discusses the issues that most affect the clinical utility of drug testing in chronic pain management with opioid therapy. It focuses on the two most commonly used specimen matrices in drug testing: urine and oral fluid. The advantages and disadvantages of urine and oral fluid in the entire testing process, from specimen collection and analytical methodologies to result interpretation are reviewed. The analytical sensitivity and specificity limitations of immunoassays used for testing are examined in detail to draw attention to how these shortcomings can affect result interpretation and influence clinical decision-making in pain management. The need for specific identification and quantitative measurement of the drugs and metabolites present to investigate suspected aberrant drug behavior or unexpected positive results is analyzed. Also presented are recent developments in optimization of test menus and testing strategies, such as the modification of the standard screen and reflexed-confirmation testing model by eliminating some of the initial immunoassay-based tests and proceeding directly to definitive testing by mass spectrometry assays.


Assuntos
Analgésicos Opioides , Testes de Química Clínica/métodos , Monitoramento de Medicamentos/métodos , Manejo da Dor/métodos , Analgésicos Opioides/análise , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/urina , Humanos , Imunoensaio , Programas de Rastreamento , Transtornos Relacionados ao Uso de Opioides/diagnóstico , Transtornos Relacionados ao Uso de Opioides/urina , Saliva/química , Detecção do Abuso de Substâncias
9.
J Clin Invest ; 127(11): 4124-4135, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990935

RESUMO

Acute lung injury is a leading cause of death in bacterial sepsis due to the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of proinflammatory leukocytes, and intractable hypoxemia. Pyroptosis is a form of programmed lytic cell death that is triggered by inflammatory caspases, but little is known about its role in EC death and acute lung injury. Here, we show that systemic exposure to the bacterial endotoxin lipopolysaccharide (LPS) causes severe endothelial pyroptosis that is mediated by the inflammatory caspases, human caspases 4/5 in human ECs, or the murine homolog caspase-11 in mice in vivo. In caspase-11-deficient mice, BM transplantation with WT hematopoietic cells did not abrogate endotoxemia-induced acute lung injury, indicating a central role for nonhematopoietic caspase-11 in endotoxemia. Additionally, conditional deletion of caspase-11 in ECs reduced endotoxemia-induced lung edema, neutrophil accumulation, and death. These results establish the requisite role of endothelial pyroptosis in endotoxemic tissue injury and suggest that endothelial inflammatory caspases are an important therapeutic target for acute lung injury.


Assuntos
Caspases/fisiologia , Células Endoteliais/enzimologia , Endotoxemia/enzimologia , Lesão Pulmonar/enzimologia , Piroptose , Animais , Estudos de Casos e Controles , Caspases Iniciadoras , Células Cultivadas , Endotélio Vascular/patologia , Endotoxemia/imunologia , Feminino , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/enzimologia , Pulmão/imunologia , Pulmão/patologia , Lesão Pulmonar/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 4 Toll-Like/metabolismo
10.
Stem Cell Reports ; 9(3): 796-806, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28781077

RESUMO

The generation of functional arterial endothelial cells (aECs) from embryonic stem cells (ESCs) holds great promise for vascular tissue engineering. However, the mechanisms underlying their generation and the potential of aECs in revascularizing ischemic tissue are not fully understood. Here, we observed that hypoxia exposure of mouse ESCs induced an initial phase of HIF1α-mediated upregulation of the transcription factor Etv2, which in turn induced the commitment to the EC fate. However, sustained activation of HIF1α in these EC progenitors thereafter induced NOTCH1 signaling that promoted the transition to aEC fate. We observed that transplantation of aECs mediated arteriogenesis in the mouse hindlimb ischemia model. Furthermore, transplantation of aECs in mice showed engraftment in ischemic myocardium and restored cardiac function in contrast to ECs derived under normoxia. Thus, HIF1α activation of Etv2 in ESCs followed by NOTCH1 signaling is required for the generation aECs that are capable of arteriogenesis and revascularization of ischemic tissue.


Assuntos
Artérias/citologia , Diferenciação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Receptores Notch/metabolismo , Fatores de Transcrição/metabolismo , Animais , Hipóxia Celular , Linhagem da Célula , Células Endoteliais/transplante , Membro Posterior/patologia , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Organogênese , Transdução de Sinais , Fatores de Transcrição/genética , Regulação para Cima/genética
11.
Sci Signal ; 10(482)2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28588080

RESUMO

Store-operated Ca2+ entry (SOCE) is critical for salivary gland fluid secretion. We report that radiation treatment caused persistent salivary gland dysfunction by activating a TRPM2-dependent mitochondrial pathway, leading to caspase-3-mediated cleavage of stromal interaction molecule 1 (STIM1) and loss of SOCE. After irradiation, acinar cells from the submandibular glands of TRPM2+/+ , but not those from TRPM2-/- mice, displayed an increase in the concentrations of mitochondrial Ca2+ and reactive oxygen species, a decrease in mitochondrial membrane potential, and activation of caspase-3, which was associated with a sustained decrease in STIM1 abundance and attenuation of SOCE. In a salivary gland cell line, silencing the mitochondrial Ca2+ uniporter or caspase-3 or treatment with inhibitors of TRPM2 or caspase-3 prevented irradiation-induced loss of STIM1 and SOCE. Expression of exogenous STIM1 in the salivary glands of irradiated mice increased SOCE and fluid secretion. We suggest that targeting the mechanisms underlying the loss of STIM1 would be a potentially useful approach for preserving salivary gland function after radiation therapy.


Assuntos
Canais de Cálcio/metabolismo , Caspase 3/metabolismo , Radioterapia/efeitos adversos , Glândulas Salivares/patologia , Glândulas Salivares/efeitos da radiação , Molécula 1 de Interação Estromal/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Células Acinares/efeitos da radiação , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Caspase 3/genética , Células Cultivadas , Humanos , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/efeitos da radiação , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Glândulas Salivares/metabolismo , Molécula 1 de Interação Estromal/genética , Canais de Cátion TRPM/metabolismo , Raios X
12.
Pain Med ; 16(6): 1132-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25800409

RESUMO

OBJECTIVE: To determine whether the prevailing liquid chromatography and tandem mass spectroscopy assay (LC-MS/MS) assay designed to monitor buprenorphine compliance of the sublingual formulation used in the substance abuse treatment setting can be extrapolated to the transdermal formulation used in the chronic pain treatment setting, which is 1000-fold less concentrated. DESIGN: Retrospective chart review. SUBJECTS: Self-reported compliant patients using the transdermal or sublingual formulations of buprenorhphine. Transdermal patch application was also visually confirmed during clinic visits. METHODS: Urine drug test results from a LC-MS/MS were compared between samples from transdermal and sublingual patients. RESULTS: While all sublingual patients tested positive for at least one metabolite of buprenorphine, only 69% of the transdermal patients did so. In addition, the most abundant metabolite in the transdermal patients was buprenorphine-glucuronide, as compared with norbuprenorphine-glucuronide in sublingual patients. CONCLUSIONS: These data suggest that currently available urine drug tests for buprenorphine, including the more expensive LC-MS/MS based assays, may not be sufficiently sensitive to detect the metabolites from transdermal buprenorphine patients. This study highlights the need to evaluate the value and sensitivity of urine drug tests given the wide range of buprenorphine dosing in clinical practice. These results underscore the need for additional cost benefit analyses comparing different confirmatory drug testing techniques including many commercially available drug testing options. © 2014 Wiley Periodicals, Inc.


Assuntos
Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/urina , Buprenorfina/administração & dosagem , Buprenorfina/urina , Dor Crônica/urina , Administração Cutânea , Administração Sublingual , Adulto , Cromatografia Líquida/normas , Dor Crônica/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Detecção do Abuso de Substâncias/normas , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Transtornos Relacionados ao Uso de Substâncias/urina , Espectrometria de Massas em Tandem/normas , Resultado do Tratamento , Urinálise/normas
13.
Clin Chim Acta ; 444: 3-8, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25659294

RESUMO

BACKGROUND: We evaluated the distribution of 25OH-D2 and 25OH-D3 in a general patient population in Western New York to provide insights into how common detectable vitamin D2 is among samples from a general patient population. METHODS: Serum 25OH-D2 and 25OH-D3 results measured by LC-MS/MS from June 2009 to December 2012 were retrospectively analyzed. RESULTS: A total of 266,269 serum tests were included for analysis. The percentage of tests with 25OH-D2 levels above the assay limit of quantitation (LoQ) decreased from 32% to 17% over the course of the study period. The percentage of tests with 25OH-D2 levels higher than those of 25OH-D3 decreased from 21% to 12%. Sixty-seven percent of the test results with 25OH-D2 levels above the LoQ had serum concentrations of 25OH-D2 higher than those of 25OH-D3. CONCLUSION: Prevalence of tests with quantifiable 25OH-D2 decreased over time and yet 17% of them still had detectable levels of 25OH-D2, 67% of which had 25OH-D2 levels higher than 25OH-D3. To achieve accurate 25-hydroxyvitamin D measurement, clinical laboratories should assess the accuracy of their assays, and if necessary, determine the local prevalence of 25OH-D2 to determine if mass spectrometry is the platform of choice to assess vitamin D deficiency.


Assuntos
25-Hidroxivitamina D 2/sangue , Calcifediol/sangue , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , New York/epidemiologia , Espectrometria de Massas em Tandem
14.
Sci Signal ; 8(359): ra3, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25587190

RESUMO

A central component of receptor-evoked Ca(2+) signaling is store-operated Ca(2+) entry (SOCE), which is activated by the assembly of STIM1-Orai1 channels in endoplasmic reticulum (ER) and plasma membrane (PM) (ER-PM) junctions in response to depletion of ER Ca(2+). We report that STIM2 enhances agonist-mediated activation of SOCE by promoting STIM1 clustering in ER-PM junctions at low stimulus intensities. Targeted deletion of STIM2 in mouse salivary glands diminished fluid secretion in vivo and SOCE activation in dispersed salivary acinar cells stimulated with low concentrations of muscarinic receptor agonists. STIM2 knockdown in human embryonic kidney (HEK) 293 cells diminished agonist-induced Ca(2+) signaling and nuclear translocation of NFAT (nuclear factor of activated T cells). STIM2 lacking five carboxyl-terminal amino acid residues did not promote formation of STIM1 puncta at low concentrations of agonist, whereas coexpression of STIM2 with STIM1 mutant lacking the polybasic region STIM1ΔK resulted in co-clustering of both proteins. Together, our findings suggest that STIM2 recruits STIM1 to ER-PM junctions at low stimulus intensities when ER Ca(2+) stores are mildly depleted, thus increasing the sensitivity of Ca(2+) signaling to agonists.


Assuntos
Sinalização do Cálcio/fisiologia , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Células Acinares/metabolismo , Análise de Variância , Animais , Proteínas de Bactérias , Western Blotting , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Células HEK293 , Humanos , Proteínas Luminescentes , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , RNA Interferente Pequeno/genética , Saliva/citologia , Análise de Sequência de DNA , Molécula 1 de Interação Estromal , Molécula 2 de Interação Estromal
15.
Am J Health Syst Pharm ; 71(18): 1539-54, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25174015

RESUMO

PURPOSE: The current epidemic of prescription opioid abuse and misuse in the United States is discussed, with an emphasis on the pharmacist's role in ensuring safe and effective opioid use. SUMMARY: U.S. sales of prescription opioids increased fourfold from 1999 to 2010, with an alarming rise in deaths and emergency department visits associated with the use of fentanyl, hydrocodone, oxycodone, and other opioid medications. Signs and symptoms of opioid toxicity may include altered mental status, hypoventilation, decreased bowel motility, central nervous system and respiratory depression, peripheral vasodilation, pulmonary edema, hypotension, bradycardia, and seizures. In patients receiving long-term opioid therapy for chronic pain, urine drug testing is an important tool for monitoring and assessment of therapy; knowledge of opioid metabolic pathways and assay limitations is essential for appropriate use and interpretation of screening and confirmatory tests. In recent years, there has been an increase in federal enforcement actions against pharmacies and prescription drug wholesalers involved in improper opioid distribution, as well as increased reliance on state-level prescription drug monitoring programs to track patterns of opioid use and improper sales. Pharmacies are urged to implement or promote appropriate guidelines on opioid therapy, including the use of pain management agreement plans; policies to ensure adequate oversight of opioid prescribing, dispensing, and waste disposal; and educational initiatives targeting patients as well as hospital and pharmacy staff. CONCLUSION: Pharmacists in hospitals and health systems can play a key role in recognizing the various forms of opioid toxicity and in preventing inappropriate prescribing and diversion of opioids.


Assuntos
Analgésicos Opioides/efeitos adversos , Serviços de Saúde Comunitária , Overdose de Drogas/epidemiologia , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Serviço de Farmácia Hospitalar , Uso Indevido de Medicamentos sob Prescrição/legislação & jurisprudência , Uso Indevido de Medicamentos sob Prescrição/estatística & dados numéricos , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/urina , Monitoramento de Medicamentos , Humanos , Manejo da Dor , Papel Profissional , Detecção do Abuso de Substâncias , Estados Unidos/epidemiologia
16.
Handb Exp Pharmacol ; 223: 1005-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24961978

RESUMO

The TRP-canonical (TRPC) subfamily, which consists of seven members (TRPC1-TRPC7), are Ca(2+)-permeable cation channels that are activated in response to receptor-mediated PIP2 hydrolysis via store-dependent and store-independent mechanisms. These channels are involved in a variety of physiological functions in different cell types and tissues. Of these, TRPC6 has been linked to a channelopathy resulting in human disease. Two key players of the store-dependent regulatory pathway, STIM1 and Orai1, interact with some TRPC channels to gate and regulate channel activity. The Ca(2+) influx mediated by TRPC channels generates distinct intracellular Ca(2+) signals that regulate downstream signaling events and consequent cell functions. This requires localization of TRPC channels in specific plasma membrane microdomains and precise regulation of channel function which is coordinated by various scaffolding, trafficking, and regulatory proteins.


Assuntos
Canais de Cátion TRPC/fisiologia , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Humanos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Proteína ORAI1 , Molécula 1 de Interação Estromal
17.
Clin Chim Acta ; 427: 158-66, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24091099

RESUMO

Recent upward trends in the prevalence of abuse of prescription drugs and illicit substances have resulted in increased demands for toxicology testing to support the emergency department and drug treatment in pain management programs. This review will discuss the challenges faced by clinical laboratories to manage the utilization of toxicology tests, particularly those ordered in managing poisoned patients in the emergency department and chronic pain patients on opioid therapy. Optimal utilization of toxicology tests to support the emergency department relies on selecting the appropriate tests for the patient, and the availability of the results in a timely fashion. Two tiers of toxicology testing systems with different requirements for turnaround time will be discussed. In patients with chronic pain urine drug testing, including screening and confirmation testing are used extensively in pain management to monitor patient compliance. A thorough understanding of the performance characteristics of the test methodologies and drug metabolism is a key to making a proper analytical and clinical interpretation of the test results and will contribute to effective utilization of these tests. In addition, the reimbursement system is an important factor in the decision making process for test selection utilization as significant costs can be incurred by both payers and patients. Collaboration, trust, and effective communication among clinicians, patients, and clinical laboratory professionals are essential for effective utilization of toxicology testing.


Assuntos
Serviços de Laboratório Clínico/organização & administração , Serviços de Laboratório Clínico/estatística & dados numéricos , Técnicas de Laboratório Clínico/estatística & dados numéricos , Testes de Toxicidade/estatística & dados numéricos , Serviços de Laboratório Clínico/economia , Técnicas de Laboratório Clínico/economia , Técnicas de Laboratório Clínico/métodos , Técnicas de Laboratório Clínico/normas , Humanos , Testes de Toxicidade/economia , Testes de Toxicidade/normas
18.
Curr Top Membr ; 71: 149-79, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23890115

RESUMO

Store-operated calcium entry (SOCE) is activated in response to depletion of the endoplasmic reticulum-Ca(2+) stores following stimulation of plasma membrane receptors that couple to PIP2 hydrolysis and IP3 generation. Search for the molecular components of SOCE channels led to the identification of mammalian transient receptor potential canonical (TRPC) family of calcium-permeable channels (TRPC1-TRPC7), which are all activated in response to stimuli that result in PIP2 hydrolysis. While several TRPCs, including TRPC1, TRPC3, and TRPC4, have been implicated in SOCE, the data are most consistent for TRPC1. Extensive studies in cell lines and knockout mouse models have established the contribution of TRPC1 to SOCE. Furthermore, there is a critical functional interaction between TRPC1 and the key components of SOCE, STIM1, and Orai1, which determines the activation of TRPC1. Orai1-mediated Ca(2+) entry is required for recruitment of TRPC1 and its insertion into surface membranes while STIM1 gates the channel. Notably, TRPC1 and Orai1 generate distinct patterns of Ca(2+) signals in cells that are decoded for the regulation of specific cellular functions. Thus, SOCE appears to be a complex process that depends on temporal and spatial coordination of several distinct steps mediated by proteins in different cellular compartments. Emerging data suggest that, in many cell types, the net Ca(2+) entry measured in response to store depletion is the result of the coordinated regulation of different calcium-permeable ion channels. Orai1 and STIM1 are central players in this process, and by mediating recruitment or activation of other Ca(2+) channels, Orai1-CRAC function can elicit rapid changes in global and local [Ca(2+)]i signals in cells. It is most likely that the type of channels and the [Ca(2+)]i signature that are generated by this process reflect the physiological function of the cell that is regulated by Ca(2+).


Assuntos
Sinalização do Cálcio , Canais de Cátion TRPC/fisiologia , Animais , Canais de Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Multimerização Proteica , Molécula 1 de Interação Estromal
20.
J Cell Sci ; 126(Pt 2): 667-75, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23203809

RESUMO

Neurotransmitter regulation of salivary fluid secretion is mediated by activation of Ca(2+) influx. The Ca(2+)-permeable transient receptor potential canonical 1 (TRPC1) channel is crucial for fluid secretion. However, the mechanism(s) involved in channel assembly and regulation are not completely understood. We report that Caveolin1 (Cav1) is essential for the assembly of functional TRPC1 channels in salivary glands (SG) in vivo and thus regulates fluid secretion. In Cav1(-/-) mouse SG, agonist-stimulated Ca(2+) entry and fluid secretion are significantly reduced. Microdomain localization of TRPC1 and interaction with its regulatory protein, STIM1, are disrupted in Cav1(-/-) SG acinar cells, whereas Orai1-STIM1 interaction is not affected. Furthermore, localization of aquaporin 5 (AQP5), but not that of inositol (1,4,5)-trisphosphate receptor 3 or Ca(2+)-activated K(+) channel (IK) in the apical region of acinar cell was altered in Cav1(-/-) SG. In addition, agonist-stimulated increase in surface expression of AQP5 required Ca(2+) influx via TRPC1 channels and was inhibited in Cav1(-/-) SG. Importantly, adenovirus-mediated expression of Cav1 in Cav1(-/-) SG restored interaction of STIM1 with TRPC1 and channel activation, apical targeting and regulated trafficking of AQP5, and neurotransmitter stimulated fluid-secretion. Together these findings demonstrate that, by directing cellular localization of TRPC1 and AQP5 channels and by selectively regulating the functional assembly TRPC1-STIM1 channels, Cav1 is a crucial determinant of SG fluid secretion.


Assuntos
Aquaporina 5/metabolismo , Caveolina 1/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Aquaporina 5/genética , Canais de Cálcio , Caveolina 1/genética , Células Cultivadas , Humanos , Imuno-Histoquímica , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas de Neoplasias/genética , Molécula 1 de Interação Estromal , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...