Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611125

RESUMO

Detailed analyses of the reasons for changes in the mechanical parameters of fiberglass exposed to different climatic zones have been made available in the literature; however, such detailed studies of basalt plastic do not yet exist. It is possible to make reasonable conclusions on the climatic resistance of reinforced plastics by monitoring the deformation-strength characteristics in combination with fractographic and DMA analyses of the solar- and shadow-exposed parts of the plastics; additionally, one can conduct analyses of the IR spectrum and the moisture sorbtion kinetics. As a starting point for the climatic aging of polymer composite materials, it is necessary to accept the time of exposure in which the maximum values of the elastic strength properties of polymeric materials are achieved. Based on the results of the DMA analysis, it was found that, unlike basalt-reinforced plastics (where the material is post-cured exclusively at the initial stage of the exposure), in glass-reinforced plastic, a process of destruction occurs. The formation of internal stresses in the material and their growth were determined through observing the duration of climatic exposure. The formation of closed porosity, depending on the duration of exposure, can be assessed using the values of the increase in the average moisture content. A set of experimental studies has established that glass-reinforced plastics are subject to greater destruction under the influence of a very cold climate than the basalt-reinforced plastic.

2.
Nanomaterials (Basel) ; 11(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34947747

RESUMO

The paper presents the results of studying the effect of borpolymer (BP) on the mechanical properties, structure, and thermodynamic parameters of ultra-high molecular weight polyethylene (UHMWPE). Changes in the mechanical characteristics of polymer composites material (PCM) are confirmed and complemented by structural studies. X-ray crystallography (XRC), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and infrared spectroscopy (IR) were used to study the melting point, morphology and composition of the filler, which corresponds to the composition and data of the certificate of the synthesized BP. Tensile and compressive mechanical tests were carried out in accordance with generally accepted standards (ASTM). It is shown that BP is an effective modifier for UHMWPE, contributing to a significant increase in the deformation and strength characteristics of the composite: tensile strength of PCM by 56%, elongation at break by 28% and compressive strength at 10% strain by 65% compared to the initial UHMWPE, due to intensive changes in the supramolecular structure of the matrix. Structural studies revealed that BP does not chemically interact with UHMWPE, but due to its high adhesion to the polymer, it acts as a reinforcing filler. SEM was used to establish the formation of a spherulite supramolecular structure of polymer composites.

3.
Polymers (Basel) ; 13(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960879

RESUMO

A quite simple method is proposed for the assessment of extremely cold subarctic climate environment destruction of the basalt fiber reinforced epoxy (BFRE) rebar. The method involves the comparison of experimentally obtained long-term moisture uptake kinetic curves of unexposed and exposed BFRP rebars. A moisture uptake test was carried out at the temperature of 60 °C and relative humidity of 98 ± 2% for 306 days. The plasticization can be neglected because of low-level moisture saturation (<0.41% wt.); the swelling and structural relaxation of the polymer network can be neglected due to the high fiber content of BFRP rebar; moisture diffusion into the basalt fibers can be neglected since it is a much lesser amount than in the epoxy binder. These assumptions made it possible to build a three-stage diffusion model. It is observed that an increase in the density of defects with an increase in the diameter of the BFRP rebar is the result of the technology of manufacturing a periodic profile. The diffusion coefficient of the BFRP rebar with a 6, 10, or 18 mm diameter increased at an average of 82.7%, 56.7%, and 30%, respectively, after exposure to the climate of Yakutsk during 28 months, whereas it was known that the strength indicators had been increased.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...