Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Interface Focus ; 10(2): 20190041, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32194929

RESUMO

In early preclinical drug development, potential candidates are tested in the laboratory using isolated cells. These in vitro experiments traditionally involve cells cultured in a two-dimensional monolayer environment. However, cells cultured in three-dimensional spheroid systems have been shown to more closely resemble the functionality and morphology of cells in vivo. While the increasing usage of hepatic spheroid cultures allows for more relevant experimentation in a more realistic biological environment, the underlying physical processes of drug transport, uptake and metabolism contributing to the spatial distribution of drugs in these spheroids remain poorly understood. The development of a multiscale mathematical modelling framework describing the spatio-temporal dynamics of drugs in multicellular environments enables mechanistic insight into the behaviour of these systems. Here, our analysis of cell membrane permeation and porosity throughout the spheroid reveals the impact of these properties on drug penetration, with maximal disparity between zonal metabolism rates occurring for drugs of intermediate lipophilicity. Our research shows how mathematical models can be used to simulate the activity and transport of drugs in hepatic spheroids and in principle any organoid, with the ultimate aim of better informing experimentalists on how to regulate dosing and culture conditions to more effectively optimize drug delivery.

2.
Curr Protoc Toxicol ; 81(1): e87, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31529797

RESUMO

Herein, we describe a protocol for the preparation and analysis of primary isolated rat hepatocytes in a 3D cell culture format described as spheroids. The hepatocyte cells spontaneously self-aggregate into spheroids without the need for synthetic extracellular matrices or hydrogels. Primary rat hepatocytes (PRHs) are a readily available source of primary differentiated liver cells and therefore conserve many of the required liver-specific functional markers, and elicit the natural in vivo phenotype when compared with common hepatic cells lines. We describe the liquid-overlay technique which provides an ultra-low attachment surface on which PRHs can be cultured as spheroids. © 2019 The Authors. Basic Protocol 1: Preparation of agarose-coated plates Basic Protocol 2: Primary rat hepatocyte isolation procedure Basic Protocol 3: Primary rat hepatocyte spheroid culture Basic Protocol 4: Immunofluorescent analysis of PRH spheroids.


Assuntos
Técnicas de Cultura de Células/métodos , Hepatócitos/fisiologia , Esferoides Celulares , Animais , Meios de Cultura , Ratos
3.
Artigo em Inglês | MEDLINE | ID: mdl-30834246

RESUMO

The ability of the liver to simultaneously carry out multiple functions is dependent on the metabolic heterogeneity of hepatocytes spatially located within a liver lobule spanning from the portal triad to the central vein. This complex zonal architecture of the liver, however, makes accurate in vitro modeling a challenge and often standard culture systems assume a homogenous model which may lead to inaccurate translatability of results. Here, we use a combination of mathematical modeling and experimental data to demonstrate a readily constructible in vitro flow system capable of liver zonation in primary rat hepatocytes. We show the differential expression of zonation markers, enhanced functionality when compared to standard static cultures and zone-specific metabolism and cell damage in the presence of paracetamol, a known zone-specific toxin. This type of advanced system provides a more in-depth and essential understanding of liver physiology and pathophysiology as well as the accurate evaluation of pharmacological interventions at a zone-specific level.

4.
Toxicol In Vitro ; 55: 160-172, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30578835

RESUMO

Many in vitro liver cell models, such as 2D systems, that are used to assess the hepatotoxic potential of xenobiotics suffer major limitations arising from a lack of preservation of physiological phenotype and metabolic competence. To circumvent some of these limitations there has been increased focus on producing more representative 3D models. Here we have used a novel approach to construct a size-controllable 3D hepatic spheroid model using freshly isolated primary rat hepatocytes (PRH) utilising the liquid-overlay technique whereby PRH spontaneously self-assemble in to 3D microtissues. This system produces viable spheroids with a compact in vivo-like structure for up to 21 days with sustained albumin production for the duration of the culture period. F-actin was seen throughout the spheroid body and P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (MRP2) transporters had polarised expression on the canalicular membrane of hepatocytes within the spheroids upon formation (day 3). The MRP2 transporter was able to functionally transport 5 µM 5-chloromethylfluorescein diacetate (CMFDA) substrates into these canalicular structures. These PRH spheroids display in vivo characteristics including direct cell-cell contacts, cellular polarisation, 3D cellular morphology, and formation of functional secondary structures throughout the spheroid. Such a well-characterised system could be readily exploited for pre-clinical and non-clinical repeat-dose investigations and could make a significant contribution to replace, reduce and refine the use of animals for applied research.


Assuntos
Hepatócitos , Esferoides Celulares , Albuminas/metabolismo , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Fluoresceínas/farmacologia , Corantes Fluorescentes/farmacologia , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ratos Wistar , Esferoides Celulares/metabolismo , Esferoides Celulares/ultraestrutura , Testes de Toxicidade/métodos , Ureia/metabolismo
5.
Toxicol In Vitro ; 48: 262-275, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29408671

RESUMO

Xenobiotic safety assessment is an area that impacts a multitude of different industry sectors such as medicinal drugs, agrochemicals, industrial chemicals, cosmetics and environmental contaminants. As such there are a number of well-developed in vitro, in vivo and in silico approaches to evaluate their properties and potential impact on the environment and to humans. Additionally, there is the continual investment in multidisciplinary scientists to explore non-animal surrogate technologies to predict specific toxicological outcomes and to improve our understanding of the biological processes regarding the toxic potential of xenobiotics. Here we provide a concise, critical evaluation of a number of in vitro systems utilised to assess the hepatotoxic potential of xenobiotics.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/efeitos dos fármacos , Testes de Toxicidade/métodos , Xenobióticos/toxicidade , Alternativas aos Testes com Animais , Animais , Células Cultivadas , Técnicas de Cultura , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...