Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(27): e2304039, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37501319

RESUMO

High-performance chiroptical synaptic phototransistors are successfully demonstrated using heterojunctions composed of a self-assembled nanohelix of a π-conjugated molecule and a metal oxide semiconductor. To impart strong chiroptical activity to the device, a diketopyrrolopyrrole-based π-conjugated molecule decorated with chiral glutamic acid is newly synthesized; this molecule is capable of supramolecular self-assembly through noncovalent intermolecular interactions. In particular, nanohelix formed by intertwinded fibers with strong and stable chiroptical activity in a solid-film state are obtained through hydrogen-bonding-driven, gelation-assisted self-assembly. Phototransistors based on interfacial charge transfer at the heterojunction from the chiroptical nanohelix to the metal oxide semiconductor show excellent chiroptical detection with a high photocurrent dissymmetry factor of 1.97 and a high photoresponsivity of 218 A W-1 . The chiroptical phototransistor demonstrates photonic synapse-like, time-dependent photocurrent generation, along with persistent photoconductivity, which is attributed to the interfacial charge trapping. Through the advantage of synaptic functionality, a trained convolutional neural network successfully recognizes noise-reduced circularly polarized images of handwritten alphabetic characters with better than 89.7% accuracy.

2.
Nano Lett ; 23(7): 3014-3022, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36939681

RESUMO

Herein, we demonstrate video-rate color three-dimensional (3D) volumetric displays using elemental-migration-assisted full-color-tunable upconversion nanoparticles (UCNPs). In the heavily doped NaErF4:Tm-based core@multishell UCNPs, erbium migration was observed. By tailoring this migration through adjustment of the intermediate shell thickness between the core and the sensitizer-doped second shell, red-green orthogonal upconversion luminescence (UCL) was achieved. Furthermore, highly efficient red-green-blue orthogonal UCL and full-color tunability were achieved in the UCNPs through a combination of elemental-migration-assisted color tuning and selective photon blocking. Finally, 3D volumetric displays were fabricated using a UCNP-polydimethylsiloxane composite. More specifically, 3D color images were created and motion pictures based on the expansion, rotation, and up/down movement of the displayed images were realized in the display matrix. Overall, our study provides new insights into upconversion color tuning and the achievement of motion pictures in the UCNP-polydimethylsiloxane composite is expected to accelerate the further development of solid-state full-color 3D volumetric displays.

3.
Nanomaterials (Basel) ; 12(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500823

RESUMO

InZnP:Ag nano-rods fabricated by the ion milling method were thermally annealed in the 250~350 °C temperature range and investigated the optimum thermal annealing conditions to further understand the mutual correlation between the optical properties and the microscopic magnetic properties. The formation of InZnP:Ag nano-rods was determined from transmission electron microscopy (TEM), total reflectivity and Raman scattering analyses. The downward shifts of peak position for LO and TO modes in the Raman spectrum are indicative of the production of Ag ion-induced strain during the annealing process of the InZnP:Ag nano-rod samples. The appearance of two emission peaks of both (A0 X) and (e, Ag) in the PL spectrum indicated that acceptor states by Ag diffusion are visible due to the effective incorporation of Ag-creating acceptor states. The binding energy between the acceptor and the exciton measured as a function of temperature was found to be 21.2 meV for the sample annealed at 300 °C. The noticeable MFM image contrast and the clear change in the MFM phase with the scanning distance indicate the formation of the ferromagnetic spin coupling interaction on the surface of InZnP:Ag nano-rods by Ag diffusion. This study suggests that the InZnP:Ag nano-rods should be a potential candidate for the application of spintronic devices.

4.
Opt Express ; 30(12): 20659-20665, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224805

RESUMO

We fabricated a 1 × 10 PbS QD photodiode array with multiple stacked QD layers with high-resolution patterning using a customized photolithographic process. The array showed the average responsivity of 5.54 × 10-3 A/W and 1.20 × 10-2 A/W at 0 V and -1 V under 1310- nm short-wavelength infrared (SWIR) illumination. The standard deviation of the pixel responsivity was under 10%, confirming the uniformity of the fabrication process. The response time was 2.2 ± 0.13 ms, and the bandwidth was 159.1 Hz. A prototype 1310-nm SWIR imager demonstrated that the QD photodiode-based SWIR image sensor is a cost-effective and practical alternative for III-V SWIR image sensors.

5.
J Am Chem Soc ; 144(35): 16020-16033, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36036662

RESUMO

Chiral perovskites have emerged as promising candidates for polarization-sensing materials. Despite their excellent chiroptical properties, the nature of their multiple-quantum-well structures is a critical hurdle for polarization-based and spintronic applications. Furthermore, as the origin of chiroptical activity in chiral perovskites is still illusive, the strategy for simultaneously enhancing the chiroptical activity and charge transport has not yet been reported. Here, we demonstrated that incorporating a Lewis base into the lattice can effectively tune the chiroptical response and electrical properties of chiral perovskites. Through solid-state nuclear magnetic resonance spectroscopic measurements and theoretical calculations, it was demonstrated that the material property manipulation resulted from the change in the time-averaged structure induced by the Lewis base. Finally, as a preliminary proof of concept, a vertical-type circularly polarized light photodetector based on chiral perovskites was developed, exhibiting an outstanding performance with a distinguishability of 0.27 and a responsivity of 0.43 A W-1.

6.
Nat Commun ; 13(1): 3259, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672362

RESUMO

Chiral perovskites are being extensively studied as a promising candidate for spintronic- and polarization-based optoelectronic devices due to their interesting spin-polarization properties. However, the origin of chiroptical activity in chiral perovskites is still unknown, as the chirality transfer mechanism has been rarely explored. Here, through the nano-confined growth of chiral perovskites (MBA2PbI4(1-x)Br4x), we verified that the asymmetric hydrogen-bonding interaction between chiral molecular spacers and the inorganic framework plays a key role in promoting the chiroptical activity of chiral perovskites. Based on this understanding, we observed remarkable asymmetry behavior (absorption dissymmetry of 2.0 × 10-3 and anisotropy factor of photoluminescence of 6.4 × 10-2 for left- and right-handed circularly polarized light) in nanoconfined chiral perovskites even at room temperature. Our findings suggest that electronic interactions between building blocks should be considered when interpreting the chirality transfer phenomena and designing hybrid materials for future spintronic and polarization-based devices.

7.
ACS Nano ; 15(11): 17917-17925, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34677045

RESUMO

Polarization-sensitive photodetection has attracted considerable attention as an emerging technology for future optoelectronic applications such as three-dimensional (3D) imaging, quantum optics, and encryption. However, traditional photodetectors based on Si or III-V InGaAs semiconductors cannot directly detect polarized light without additional optical components. Herein, we demonstrate a self-powered linear-polarization-sensitive near-infrared (NIR) photodetector using a two-dimensional WSe2/ReSe2 van der Waals heterostructure. The WSe2/ReSe2 heterojunction photodiode with semivertical geometry exhibits excellent performance: an ideality factor of 1.67, a broad spectral photoresponse of 405-980 nm with a significant photovoltaic effect, outstanding linearity with a linear dynamic range wider than 100 dB, and rapid photoswitching behavior with a cutoff frequency up to 100 kHz. Strongly polarized excitonic transitions around the band edge in ReSe2 lead to significant 980 nm NIR linear-polarization-dependent photocurrent. This linear polarization sensitivity remains stable even after exposure to air for longer than five months. Furthermore, by leveraging the NIR (980 nm)-selective linear polarization detection of this photodiode under photovoltaic operation, we demonstrate digital incoherent holographic 3D imaging.

8.
Nano Lett ; 21(11): 4838-4844, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038139

RESUMO

Here, excitation orthogonalized red/green/blue upconversion luminescence (UCL)-based full-color tunable rare-earth (RE) ion-doped upconversion nanophosphors (UCNPs) are reported. The LiREF4-based core/sextuple-shell (C/6S) UCNPs are synthesized, and they consist of a blue-emitting core, green-emitting inner shell, and red-emitting outer shell, with inert intermediate and outermost shells. The synthesized C/6S UCNPs emit blue, green, and red light under 980, 800, and 1532 nm, respectively. Importantly, by combining incident near-infrared (NIR) light with various wavelengths (800, 980, and 1532 nm), full-color UCL including blue, cyan, green, yellow, orange, red, purple, and white UCL is achieved from the single C/6S UCNP composition. The color gamut obtained from the C/6S UCNPs shows 101.6% of the sRGB standard color gamut. Furthermore, transparent C/6S UCNP-polydimethylsiloxane (PDMS) composite is prepared. Full-color display realized in the transparent C/6S UCNP-PDMS composite indicates the feasibility of constructing the C/6S UCNP-based three-dimensional volumetric displays with wide color gamut.

9.
Sci Rep ; 11(1): 7699, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833327

RESUMO

We report the growth mechanism and optical characteristics of type-II band-aligned GaSb quantum dots (QDs) grown on GaAs using a droplet epitaxy-driven nanowire formation mechanism with molecular beam epitaxy. Using transmission electron microscopy and scanning electron microscopy images, we confirmed that the QDs, which comprised zinc-blende crystal structures with hexagonal shapes, were successfully grown through the formation of a nanowire from a Ga droplet, with reduced strain between GaAs and GaSb. Photoluminescence (PL) peaks of GaSb capped by a GaAs layer were observed at 1.11 eV, 1.26 eV, and 1.47 eV, assigned to the QDs, a wetting-like layer (WLL), and bulk GaAs, respectively, at the measurement temperature of 14 K and excitation laser power of 30 mW. The integrated PL intensity of the QDs was significantly stronger than that of the WLL, which indicated well-grown GaSb QDs on GaAs and the generation of an interlayer exciton, as shown in the power- and temperature-dependent PL spectra, respectively. In addition, time-resolved PL data showed that the GaSb QD and GaAs layers formed a self-aligned type-II band alignment; the temperature-dependent PL data exhibited a high equivalent internal quantum efficiency of 15 ± 0.2%.

10.
J Am Chem Soc ; 142(9): 4206-4212, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32049532

RESUMO

The effect of chemical-composition modification on the chiroptical property of chiral organic ammonium cation-containing organic inorganic hybrid perovskite (chiral OIHP) is investigated. Varying the mixing ratio of bromide and iodide anions in S- or R-C6H5CH2(CH3)NH3)2PbI4(1-x)Br4x modifies the band gap of chiral OIHP, leading to a shift of the circular dichroism (CD) signal from 495 to 474 nm. However, it is also found that an abrupt crystalline structure transition occurs, and the CD signal is turned off when iodide-determinant phases are transformed into the bromide-determinant phase. To obtain CD in the wavelength range where the bromide-determinant phase is supposed to exhibit chiroptical activity, that is, <474 nm, S- or R-C12H7CH2(CH3)NH3 with a larger spacer group can be adopted; thus, the CD signal can be further blue-shifted to ∼375 nm. Here, we show that chemical-composition modification of chiral OIHP affects the chiroptical properties of chiral OIHP in two ways: (1) tuning the wavelength of CD by modulating the excitonic band structure and (2) switching the CD on and off by inducing a crystalline-structure change. These properties can be utilized for structural engineering of high-performance chiroptical materials for spin-polarized light-emitting devices and polarization-based optoelectronics.

11.
ACS Appl Mater Interfaces ; 12(9): 10858-10866, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32037787

RESUMO

Two-dimensional (2D) van der Waals (vdW) heterostructures herald new opportunities for conducting fundamental studies of new physical/chemical phenomena and developing diverse nanodevice applications. In particular, vdW heterojunction p-n diodes exhibit great potential as high-performance photodetectors, which play a key role in many optoelectronic applications. Here, we report on 2D MoTe2/MoS2 multilayer semivertical vdW heterojunction p-n diodes and their optoelectronic application in self-powered visible-invisible multiband detection and imaging. Our MoTe2/MoS2 p-n diode exhibits an excellent electrical performance with an ideality factor of less than 1.5 and a high rectification (ON/OFF) ratio of more than 104. In addition, the photodiode exhibits broad spectral photodetection capability over the range from violet (405 nm) to near-infrared (1310 nm) wavelengths and a remarkable linear dynamic range of 130 dB within an optical power density range of 10-5 to 1 W/cm2 in the photovoltaic mode. Together with these favorable static photoresponses and electrical behaviors, very fast photo- and electrical switching behaviors are clearly observed with negligible changes at modulation frequencies greater than 100 kHz. In particular, inspired by the photoswitching results for periodic red (638 nm) and near-infrared (1310 nm) illumination at 100 kHz, we successfully demonstrate a prototype self-powered visible-invisible multiband image sensor based on the MoTe2/MoS2 p-n photodiode as a pixel. Our findings can pave the way for more advanced developments in optoelectronic systems based on 2D vdW heterostructures.

12.
Sci Rep ; 9(1): 18661, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819126

RESUMO

In this study, multicolor photodetectors (PDs) fabricated by using bulk p-i-n-based visible GaAs and near-infrared InGaAs structures were monolithically integrated through a high-throughput epitaxial lift-off (ELO) process. To perform multicolor detection in integrated structures, GaAs PDs were transferred onto InGaAs PDs by using a Y2O3 bonding layer to simultaneously detect visible and near-infrared photons and minimize the optical loss. As a result, it was found that the GaAs top PD and InGaAs bottom PD were vertically aligned without tilting in x-ray diffraction (XRD) measurement. A negligible change in the dark currents for each PD was observed in comparison with reference PDs through electrical characterization. Furthermore, through optical measurements and simulation, photoresponses were clearly revealed in the visible and near-infrared band for the material's absorption region, respectively. Finally, we demonstrated the simultaneous multicolor detection of the visible and near-infrared region,which implies individual access to each PD without mutual interference. These results are a significant improvement for the fabrication of multicolor PDs that enables the formation of bulk-based multicolor PDs on a single substrate with a high pixel density and nearly perfect vertical alignment for high-resolution multicolor imaging.

13.
Nanoscale ; 11(48): 23139-23148, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560000

RESUMO

In this study, we proposed a strategy to fabricate vertically stacked subpixel (VSS) micro-light-emitting diodes (µ-LEDs) for future ultrahigh-resolution microdisplays. At first, to vertically stack the LED with different colors, we successfully adopted a bonding-interface-engineered monolithic integration method using SiO2/SiNx distributed Bragg reflectors (DBRs). It was found that an intermediate DBR structure could be used as the bonding layer and color filter, which could reflect and transmit desired wavelengths through the bonding interface. Furthermore, the optically pumped µ-LED array with a pitch of 0.4 µm corresponding to the ultrahigh-resolution of 63 500 PPI could be successfully fabricated using a typical semiconductor process, including electron-beam lithography. Compared with the pick-and-place strategy (limited by machine alignment accuracy), the proposed strategy leads to the fabrication of significantly improved high-density µ-LEDs. Finally, we systematically investigated the effects of surface traps using time-resolved photoluminescence (TRPL) and two-dimensional simulations. The obtained results clearly demonstrated that performance improvements could be possible by employing optimal passivation techniques by diminishing the pixel size for fabricating low-power and highly efficient microdisplays.

14.
Small ; 15(13): e1900008, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30828958

RESUMO

With ever-growing technological demands in the imaging sensor industry for autonomous driving and augmented reality, developing sensors that can satisfy not only image resolution but also the response speed becomes more challenging. Herein, the focus is on developing a high-speed photosensor capable of obtaining high-resolution, high-speed imaging with colloidal quantum dots (QDs) as the photosensitive material. In detail, high-speed QD photodiodes are demonstrated with rising and falling times of τr = 28.8 ± 8.34 ns and τf = 40 ± 9.81 ns, respectively, realized by fast separation of electron-hole pairs due to the action of internal electric field at the QD interface, mainly by the interaction between metal oxide and the QD's ligands. Such energy transfer relations are analyzed and interpreted with time-resolved photoluminescence measurements, providing physical understanding of the device and working principles.

15.
Nano Lett ; 18(10): 6188-6194, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30223652

RESUMO

We found that optical Aharonov-Bohm oscillations in a single GaAs/GaAlAs quantum ring can be controlled by excitation intensity. With a weak excitation intensity of 1.2 kW cm-2, the optical Aharonov-Bohm oscillation period of biexcitons was observed to be half that of excitons in accordance with the period expected for a two-exciton Wigner molecule. When the excitation intensity is increased by an order of magnitude (12 kW cm-2), a gradual deviation of the Wigner molecule condition occurs with decreased oscillation periods and diamagnetic coefficients for both excitons and biexcitons along with a spectral shift. These results suggest that the effective orbit radii and rim widths of electrons and holes in a single quantum ring can be modified by light intensity via photoexcited carriers, which are possibly trapped at interface defects resulting in a local electric field.

16.
Nanotechnology ; 29(20): 205602, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29488899

RESUMO

We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

17.
Opt Express ; 25(16): 19561-19567, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041149

RESUMO

SiO2 is a commonly used insulation layer for QCLs but has high absorption peak around 8 to 10 µm. Instead of SiO2, we used Y2O3 as an insulation layer for DC-QCL and successfully demonstrated lasing operation at the wavelength around 8.1 µm. We also showed 2D numerical analysis on the absorption coefficient of our DC-QCL structure with various parameters such as insulating materials, waveguide width, and mesa angle.

18.
Phys Rev Appl ; 72017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28580373

RESUMO

Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modelled through the coupled mode equations of cavity optomechanics.

19.
Nano Lett ; 16(11): 6946-6953, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27733041

RESUMO

Although various colloidal quantum dot (QD) coating and patterning techniques have been developed to meet the demands in optoelectronic applications over the past years, each of the previously demonstrated methods has one or more limitations and trade-offs in forming multicolor, high-resolution, or large-area patterns of QDs. In this study, we present an alternative QD patterning technique using conventional photolithography combined with charge-assisted layer-by-layer (LbL) assembly to solve the trade-offs of the traditional patterning processes. From our demonstrations, we show repeatable QD patterning process that allows multicolor QD patterns in both large-area and microscale. Also, we show that the QD patterns are robust against additional photolithography processes and that the thickness of the QD patterns can be controlled at each position. To validate that this process can be applied to actual device applications as an active material, we have fabricated inverted, differently colored, active QD light-emitting device (QD-LED) on a pixelated substrate, which achieved maximum electroluminescence intensity of 23 770 cd/m2, and discussed the results. From our findings, we believe that our process provides a solution to achieving both high-resolution and large-scale QD pattern applicable to not only display, but also to practical photonic device research and development.

20.
Nano Lett ; 16(1): 27-33, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26648477

RESUMO

The Aharonov-Bohm effect in ring structures in the presence of electronic correlation and disorder is an open issue. We report novel oscillations of a strongly correlated exciton pair, similar to a Wigner molecule, in a single nanoquantum ring, where the emission energy changes abruptly at the transition magnetic field with a fractional oscillation period compared to that of the exciton, a so-called fractional optical Aharonov-Bohm oscillation. We have also observed modulated optical Aharonov-Bohm oscillations of an electron-hole pair and an anticrossing of the photoluminescence spectrum at the transition magnetic field, which are associated with disorder effects such as localization, built-in electric field, and impurities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...