Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv ; 30(1): 2232952, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37434450

RESUMO

Click chemistries are efficient and selective reactions that have been leveraged for multi-stage drug delivery. A multi-stage system allows independent delivery of targeting molecules and drug payloads, but targeting first-phase materials specifically to disease sites remains a challenge. Stimuli-responsive systems are an emerging strategy where common pathophysiological triggers are used to target payloads. Oxidative stress is widely implicated in disease, and we have previously demonstrated that reactive oxygen species (ROS) can crosslink and immobilize polyethylene glycol diacrylate (PEGDA) in tissue mimics. To build on these promising results, we present a two-step, catch-and-release system using azide-DBCO click chemistry and demonstrate the capture and eventual release of a fluorescent payload at defined times after the formation of a PEGDA capturing net. The azide component is included with radical-sensitive PEGDA, and the payload is conjugated to the DBCO group. In cell-free and cell-based tissue mimic models, azides were incorporated at 0-30% in the first-phase polymer net, and DBCO was delivered at 2.5-10 µM in the second phase to control payload delivery. The payload could be captured at multiple timepoints after initial net formation, yielding a flexible and versatile targeting system. Matrix metalloproteinase (MMP)-degradable peptides were incorporated into the polymer backbone to engineer fluorescent payload release by MMPs, which are broadly upregulated in diseases, through degradation of the capture net and directly from the DBCO. Taken together, this research demonstrates proof-of-principle for a responsive and clickable biomaterial to serve as a multi-potent agent for the treatment of diseases compounded by high free radicals.


Assuntos
Azidas , Química Click , Radicais Livres , Espécies Reativas de Oxigênio , Corantes , Polímeros
2.
Oncotarget ; 13: 373-386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186194

RESUMO

Activating variants in the PEST region of NOTCH1 have been associated with aggressive phenotypes in human cancers, including triple-negative breast cancer (TNBC). Previous studies suggested that PEST domain variants in TNBC patients resulted in increased cell proliferation, invasiveness, and decreased overall survival. In this study, we assess the phenotypic transformation of activating NOTCH1 variants and their response to standard of care therapies. AAV-mediated gene targeting was used to isogenically incorporate 3 NOTCH1 variants, including a novel TNBC frameshift variant, in two non-tumorigenic breast epithelial cell lines, MCF10A and hTERT-IMEC. Two different variants at the NOTCH1 A2241 site (A2441fs and A2441T) both demonstrated increased transformative properties when compared to a non-transformative PEST domain variant (S2523L). These phenotypic changes include proliferation, migration, anchorage-independent growth, and MAPK pathway activation. In contrast to previous studies, activating NOTCH1 variants did not display sensitivity to a gamma secretase inhibitor (GSI) or resistance to chemotherapies. This study demonstrates distinct transformative phenotypes are specific to a given variant within NOTCH1 and these phenotypes do not correlate with sensitivities or resistance to chemotherapies or GSIs. Although previous studies have suggested NOTCH1 variants may be prognostic for TNBC, our study does not demonstrate prognostic ability of these variants and suggests further characterization would be required for clinical applications.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Proliferação de Células/genética , Inibidores e Moduladores de Secretases gama , Humanos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais , Padrão de Cuidado , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/terapia
3.
NPJ Breast Cancer ; 7(1): 45, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893322

RESUMO

Inherited mutations in BRCA1, BRCA2, and PALB2 cause a high risk of breast cancer. Here, we conducted parallel conditional knockout (CKO) of Brca1, Palb2, and Brca2, individually and in combination, along with one copy of Trp53, in the mammary gland of nulliparous female mice. We observed a functional equivalence of the three genes in their basic tumor-suppressive activity, a linear epistasis of Palb2 and Brca2, but complementary roles of Brca1 and Palb2 in mammary tumor suppression, as combined ablation of either Palb2 or Brca2 with Brca1 led to delayed tumor formation. Whole-exome sequencing (WES) revealed both similarities and differences between Brca1 and Palb2 or Brca2 null tumors. Analyses of mouse mammary glands and cultured human cells showed that combined loss of BRCA1 and PALB2 led to high levels of reactive oxygen species (ROS) and increased apoptosis, implicating oxidative stress in the delayed tumor development in Brca1;Palb2 double CKO mice. The functional complementarity between BRCA1 and PALB2/BRCA2 and the role of ROS in tumorigenesis require further investigation.

4.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33529175

RESUMO

Intratumor heterogeneity is an important mediator of poor outcomes in many cancers, including breast cancer. Genetic subclones frequently contribute to this heterogeneity; however, their growth dynamics and interactions remain poorly understood. PIK3CA and HER2 alterations are known to coexist in breast and other cancers. Herein, we present data that describe the ability of oncogenic PIK3CA mutant cells to induce the proliferation of quiescent HER2 mutant cells through a cell contact-mediated mechanism. Interestingly, the HER2 cells proliferated to become the major subclone over PIK3CA counterparts both in vitro and in vivo. Furthermore, this phenotype was observed in both hormone receptor-positive and -negative cell lines, and was dependent on the expression of fibronectin from mutant PIK3CA cells. Analysis of human tumors demonstrated similar HER2:PIK3CA clonal dynamics and fibronectin expression. Our study provides insight into nonrandom subclonal architecture of heterogenous tumors, which may aid the understanding of tumor evolution and inform future strategies for personalized medicine.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Comunicação Celular/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Técnicas de Cocultura , Feminino , Fibronectinas/antagonistas & inibidores , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Técnicas de Inativação de Genes , Humanos , Imuno-Histoquímica , Células MCF-7 , Mutação , Fenótipo , Receptor ErbB-2/genética
5.
Breast Cancer Res Treat ; 179(3): 631-642, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31823098

RESUMO

BACKGROUND/PURPOSE: TrkA overexpression occurs in over 20% of breast cancers, including triple-negative breast cancers (TNBC), and has recently been recognized as a potential driver of carcinogenesis. Recent clinical trials of pan-Trk inhibitors have demonstrated targeted activity against tumors harboring NTRK fusions, a relatively rare alteration across human cancers. Despite this success, current clinical trials have not investigated TrkA overexpression as an additional therapeutic target for pan-Trk inhibitors. Here, we evaluate the cancerous phenotypes of TrkA overexpression relative to NTRK1 fusions in human cells and assess response to pharmacologic Trk inhibition. EXPERIMENTAL DESIGN/METHODS: To evaluate the clinical utility of TrkA overexpression, a panel of TrkA overexpressing cells were developed via stable transfection of an NTRK1 vector into the non-tumorigenic breast cell lines, MCF10A and hTERT-IMEC. A panel of positive controls was generated via stable transfection with a CD74-NTRK1 fusion vector into MCF10A cells. Cells were assessed via various in vitro and in vivo analyses to determine the transformative potential and targetability of TrkA overexpression. RESULTS: TrkA overexpressing cells demonstrated transformative phenotypes similar to Trk fusions, indicating increased oncogenic potential. TrkA overexpressing cells demonstrated growth factor-independent proliferation, increased PI3Kinase and MAPKinase pathway activation, anchorage-independent growth, and increased migratory capacity. These phenotypes were abrogated by the addition of the pan-Trk inhibitor, larotrectinib. In vivo analysis demonstrated increased tumorgenicity and metastatic potential of TrkA overexpressing breast cancer cells. CONCLUSIONS: Herein, we demonstrate TrkA overexpressing cells show increased tumorgenicity and are sensitive to pan-Trk inhibitors. These data suggest that TrkA overexpression may be an additional target for pan-Trk inhibitors and provide a targeted therapy for breast cancer patients.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Expressão Gênica , Oncogenes , Receptor trkA/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
6.
Breast Cancer Res Treat ; 174(2): 401-412, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30560461

RESUMO

PURPOSE: Estrogen receptor-alpha (ER) is a therapeutic target of ER-positive (ER+) breast cancers. Although ER signaling is complex, many mediators of this pathway have been identified. Specifically, phosphorylation of ER at serine 118 affects responses to estrogen and therapeutic ligands and has been correlated with clinical outcomes in ER+ breast cancer patients. We hypothesized that a newly described germline variant (S118P) at this residue would drive cellular changes consistent with breast cancer development and/or hormone resistance. METHODS: Isogenic human breast epithelial cell line models harboring ER S118P were developed via genome editing and characterized to determine the functional effects of this variant. We also examined the frequency of ER S118P in a case-control study (N = 536) of women with and without breast cancer with a familial risk. RESULTS: In heterozygous knock-in models, the S118P variant demonstrated no significant change in proliferation, migration, MAP Kinase pathway signaling, or response to the endocrine therapies tamoxifen and fulvestrant. Further, there was no difference in the prevalence of S118P between women with and without cancer relative to population registry databases. CONCLUSIONS: This study suggests that the ER S118P variant does not affect risk for breast cancer or hormone therapy resistance. Germline screening and modification of treatments for patients harboring this variant are likely not warranted.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/epidemiologia , Receptor alfa de Estrogênio/genética , Mutação em Linhagem Germinativa , Adulto , Idoso , Neoplasias da Mama/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto/uso terapêutico , Variação Genética , Humanos , Incidência , Células MCF-7 , Pessoa de Meia-Idade , Fosforilação , Análise de Sobrevida , Tamoxifeno/uso terapêutico , Resultado do Tratamento
7.
Pract Lab Med ; 12: e00108, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30140723

RESUMO

BACKGROUND: Genomic testing is often limited by the exhaustible nature of human tissue and blood samples. Here we describe biotinylated amplicon sequencing (BAmSeq), a method that allows for the creation of PCR amplicon based next-generation sequencing (NGS) libraries while retaining the original source DNA. DESIGN AND METHODS: Biotinylated primers for different loci were designed to create NGS libraries using human genomic DNA from cell lines, plasma, and formalin-fixed paraffin embedded (FFPE) tissues using the BAmSeq protocol. DNA from the original template used for each BAmSeq library was recovered after separation with streptavidin magnetic beads. The recovered DNA was then used for end-point, quantitative and droplet digital PCR (ddPCR) as well as NGS using a cancer gene panel. RESULTS: Recovered DNA was analyzed and compared to the original DNA after one or two rounds of BAmSeq. Recovered DNA revealed comparable genomic distributions and mutational allelic frequencies when compared to original source DNA. Sufficient quantities of recovered DNA after BAmSeq were obtained, allowing for additional downstream applications. CONCLUSIONS: We demonstrate that BAmSeq allows original DNA template to be recovered with comparable quality and quantity to the source DNA. This recovered DNA is suitable for many downstream applications and may prevent sample exhaustion, especially when DNA quantity or source material is limiting.

8.
Breast Cancer Res Treat ; 170(2): 425-430, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29541976

RESUMO

BACKGROUND/PURPOSE: Tumor heterogeneity is a now well-recognized phenomenon that can affect the classification, prognosis and treatment of human cancers. Heterogeneity is often described in primary breast cancers based upon histologic subtypes, hormone- and HER2-receptor status, and immunolabeling for various markers, which can be seen within a single tumor as mixed cellular populations, or as separate discrete foci. EXPERIMENTAL DESIGN/METHODS: Here, we present a case report of a patient's primary breast cancer that had two separate but adjacent histologic components, one that was estrogen receptor (ER) positive, and the other ER negative. Each component was subjected to whole exome sequencing and compared for gene identity to determine clonal origin. RESULTS: Using prior bioinformatic tools, we demonstrated that both the ER positive and negative components shared many variants, including passenger and driver alterations. Copy number variations also supported the two components were derived from a single common clone. CONCLUSIONS: These analyses strongly suggest that the two ER components of this patient's breast cancer were derived from the same clonal origin. Our results have implications for the evolution of breast cancers with mixed histologies, and how they might be best managed for optimal therapy.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Evolução Clonal/genética , Receptor alfa de Estrogênio/genética , Sequenciamento do Exoma , Locos de Características Quantitativas , Adulto , Biomarcadores Tumorais , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Feminino , Humanos , Imuno-Histoquímica
9.
Clin Cancer Res ; 23(16): 4875-4884, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28424200

RESUMO

Purpose: Although most human cancers display a single histology, there are unusual cases where two or more distinct tissue types present within a primary tumor. One such example is metaplastic breast carcinoma, a rare but aggressive cancer with a heterogeneous histology, including squamous, chondroid, and spindle cells. Metaplastic carcinomas often contain an admixed conventional ductal invasive or in situ mammary carcinoma component, and are typically triple-negative for estrogen receptor, progesterone receptor, and HER-2 amplification/overexpression. An unanswered question is the origin of metaplastic breast cancers. While they may arise independently from their ductal components, their close juxtaposition favors a model that postulates a shared origin, either as two derivatives from the same primary cancer or one histology as an outgrowth of the other. Understanding the mechanism of development of these tumors may inform clinical decisions.Experimental Design: We performed exome sequencing for paired metaplastic and adjacent conventional invasive ductal carcinomas in 8 patients and created a pipeline to identify somatic variants and predict their functional impact, without having normal tissue. We then determined the genetic relationships between the histologically distinct compartments.Results: In each case, the tumor components have nearly identical landscapes of somatic mutation, implying that the differing histologies do not derive from genetic clonal divergence.Conclusions: A shared origin for tumors with differing histologies suggests that epigenetic or noncoding changes may mediate the metaplastic phenotype and that alternative therapeutic approaches, including epigenetic therapies, may be required for metaplastic breast cancers. Clin Cancer Res; 23(16); 4875-84. ©2017 AACR.


Assuntos
Neoplasias da Mama/genética , Mama/metabolismo , Carcinoma Ductal de Mama/genética , Sequenciamento do Exoma/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Células Clonais/metabolismo , Células Clonais/patologia , Variações do Número de Cópias de DNA , Feminino , Humanos , Metaplasia/genética , Metaplasia/metabolismo , Pessoa de Meia-Idade , Mutação , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
10.
Breast Cancer Res Treat ; 162(3): 451-464, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28190247

RESUMO

BACKGROUND/PURPOSE: The combined contributions of oncogenes and tumor suppressor genes toward carcinogenesis remain poorly understood. Elucidation of cancer gene cooperativity can provide new insights leading to more effective use of therapies. EXPERIMENTAL DESIGN/METHODS: We used somatic cell genome editing to introduce singly and in combination PIK3CA mutations (E545K or H1047R) with TP53 alterations (R248W or knockout), to assess any enhanced cancerous phenotypes. The non-tumorigenic human breast epithelial cell line, MCF10A, was used as the parental cell line, and resultant cells were assessed via various in vitro assays, growth as xenografts, and drug sensitivity assays using targeted agents and chemotherapies. RESULTS: Compared to single-gene-targeted cells and parental controls, cells with both a PIK3CA mutation and TP53 alteration had increased cancerous phenotypes including cell proliferation, soft agar colony formation, aberrant morphology in acinar formation assays, and genomic heterogeneity. Cells also displayed varying sensitivities to anti-neoplastic drugs, although all cells with PIK3CA mutations showed a relative increased sensitivity to paclitaxel. All cell lines remained non-tumorigenic. CONCLUSIONS: This cell line panel provides a resource for further elucidating cooperative genetic mediators of carcinogenesis and response to therapies.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação , Fenótipo , Proteína Supressora de Tumor p53/genética , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Centrômero/genética , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Amplificação de Genes , Edição de Genes , Técnicas de Inativação de Genes , Instabilidade Genômica , Genótipo , Humanos , Camundongos , Paclitaxel/farmacologia
11.
J Natl Compr Canc Netw ; 14(12): 1495-1498, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27956534

RESUMO

Next-generation sequencing (NGS) is increasingly being used in cancer care to identify both somatic tumor driver mutations that can be targeted for therapy, and heritable mutations in the germline associated with increased cancer risk. This report presents a case of a JAK2 V617F mutation falsely identified as a duodenal cancer mutation via NGS. The patient was found to have a history of polycythemia vera, a disorder with a high incidence of JAK2 somatic mutations. Buccal cell DNA showed heterozygosity for the mutation, suggesting that it was potentially germline. However, subsequent resequencing of tumor, adjacent normal tissue, and fingernail DNA confirmed the mutation was somatic, and its presence in tumor and buccal cells resulted from contaminating blood cells. This report highlights important nuances of NGS that can lead to misinterpretation of results with potential clinical implications.


Assuntos
Adenocarcinoma/diagnóstico , Contaminação por DNA , Neoplasias Duodenais/diagnóstico , Janus Quinase 2/genética , Policitemia Vera/diagnóstico , Dor Abdominal/etiologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Células Sanguíneas , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Quimioterapia Adjuvante , Diagnóstico Diferencial , Neoplasias Duodenais/genética , Neoplasias Duodenais/patologia , Neoplasias Duodenais/terapia , Duodeno/diagnóstico por imagem , Feminino , Fluoruracila/uso terapêutico , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Cuidados Paliativos na Terminalidade da Vida , Humanos , Leucovorina/uso terapêutico , Mucosa Bucal/citologia , Mutação , Unhas , Compostos Organoplatínicos/uso terapêutico , Pancreaticoduodenectomia/métodos , Flebotomia , Policitemia Vera/complicações , Policitemia Vera/genética , Policitemia Vera/terapia , Análise de Sequência de DNA , Tomografia Computadorizada por Raios X
12.
Kidney Int ; 89(3): 565-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26880453

RESUMO

Chronic metabolic acidosis stimulates cell-mediated calcium efflux from bone through osteoblastic prostaglandin E2-induced stimulation of receptor activator of NF-kB ligand leading to increased osteoclastic bone resorption. Osteoblasts express the proton-sensing G-protein-coupled receptor OGR1, which activates inositol phosphate-mediated intracellular calcium. Proton-induced osteoblastic intracellular calcium signaling requires ovarian cancer G-protein-coupled receptor 1 (OGR1), suggesting that OGR1 is the sensor activated during acidosis to cause bone resorption. Growing mice produce large amounts of metabolic acids, which must be buffered, primarily by bone, before excretion by the kidney. Here we tested whether lack of OGR1 inhibits proton-induced bone resorption by measuring bone mineral density by micro-computed tomography and histomorphometry in 8-week-old male OGR1(-/-) and C57/Bl6 wild type mice. OGR1(-/-) mice have normal skeletal development with no atypical gross phenotype. Trabecular and cortical bone volume was increased in tibiae and vertebrae from OGR1(-/-). There were increased osteoblast numbers on the cortical and trabecular surfaces of tibiae from OGR1(-/-) mice, increased endocortical and trabecular bone formation rates, and osteoblastic gene expression. Osteoclast numbers and surface were increased in tibiae of OGR1(-/-) mice. Thus, in rapidly growing mice, lack of OGR1 leads to increased bone mass with increased bone turnover and a greater increase in bone formation than resorption. This supports the important role of the proton receptor OGR1 in the response of bone to protons.


Assuntos
Densidade Óssea , Osteoblastos/metabolismo , Osteogênese , Receptores Acoplados a Proteínas G/deficiência , Tíbia/metabolismo , Animais , Densidade Óssea/genética , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica , Genótipo , Concentração de Íons de Hidrogênio , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese/genética , Fenótipo , Receptores Acoplados a Proteínas G/genética , Tíbia/diagnóstico por imagem , Fatores de Tempo , Microtomografia por Raio-X
13.
Clin Cancer Res ; 22(4): 993-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26261103

RESUMO

PURPOSE: Mutations in the estrogen receptor (ER)α gene, ESR1, have been identified in breast cancer metastases after progression on endocrine therapies. Because of limitations of metastatic biopsies, the reported frequency of ESR1 mutations may be underestimated. Here, we show a high frequency of ESR1 mutations using circulating plasma tumor DNA (ptDNA) from patients with metastatic breast cancer. EXPERIMENTAL DESIGN: We retrospectively obtained plasma samples from eight patients with known ESR1 mutations and three patients with wild-type ESR1 identified by next-generation sequencing (NGS) of biopsied metastatic tissues. Three common ESR1 mutations were queried for using droplet digital PCR (ddPCR). In a prospective cohort, metastatic tissue and plasma were collected contemporaneously from eight ER-positive and four ER-negative patients. Tissue biopsies were sequenced by NGS, and ptDNA ESR1 mutations were analyzed by ddPCR. RESULTS: In the retrospective cohort, all corresponding mutations were detected in ptDNA, with two patients harboring additional ESR1 mutations not present in their metastatic tissues. In the prospective cohort, three ER-positive patients did not have adequate tissue for NGS, and no ESR1 mutations were identified in tissue biopsies from the other nine patients. In contrast, ddPCR detected seven ptDNA ESR1 mutations in 6 of 12 patients (50%). CONCLUSIONS: We show that ESR1 mutations can occur at a high frequency and suggest that blood can be used to identify additional mutations not found by sequencing of a single metastatic lesion.


Assuntos
Neoplasias da Mama/genética , DNA de Neoplasias/sangue , Receptor alfa de Estrogênio/genética , Neoplasias Hepáticas/genética , Adulto , Idoso , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Análise Mutacional de DNA , DNA de Neoplasias/genética , Feminino , Frequência do Gene , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/secundário , Pessoa de Meia-Idade , Mutação de Sentido Incorreto
14.
Proc Natl Acad Sci U S A ; 112(45): E6205-14, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26508629

RESUMO

Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as "negative" by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them.


Assuntos
Movimento Celular/genética , Mutação de Sentido Incorreto/genética , Neoplasias/genética , Receptor ErbB-2/genética , Transdução de Sinais/genética , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Ensaio de Unidades Formadoras de Colônias , Citometria de Fluxo , Marcação de Genes , Células HEK293 , Humanos , Immunoblotting , Lapatinib , Quinazolinas , Quinolinas , Tiazóis
15.
Proc Natl Acad Sci U S A ; 112(37): 11583-8, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324937

RESUMO

The tumor protein 53 (TP53) tumor suppressor gene is the most frequently somatically altered gene in human cancers. Here we show expression of N-Myc down-regulated gene 1 (NDRG1) is induced by p53 during physiologic low proliferative states, and mediates centrosome homeostasis, thus maintaining genome stability. When placed in physiologic low-proliferating conditions, human TP53 null cells fail to increase expression of NDRG1 compared with isogenic wild-type controls and TP53 R248W knockin cells. Overexpression and RNA interference studies demonstrate that NDRG1 regulates centrosome number and amplification. Mechanistically, NDRG1 physically associates with γ-tubulin, a key component of the centrosome, with reduced association in p53 null cells. Strikingly, TP53 homozygous loss was mutually exclusive of NDRG1 overexpression in over 96% of human cancers, supporting the broad applicability of these results. Our study elucidates a mechanism of how TP53 loss leads to abnormal centrosome numbers and genomic instability mediated by NDRG1.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/ultraestrutura , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Aneuploidia , Animais , Mama/metabolismo , Linhagem Celular , Proliferação de Células , Centrossomo/metabolismo , Feminino , Genoma , Heterozigoto , Homeostase , Homozigoto , Humanos , Hibridização in Situ Fluorescente , Camundongos , Camundongos Knockout , Neoplasias/patologia , Fenótipo , Interferência de RNA , Tubulina (Proteína)/metabolismo
16.
Calcif Tissue Int ; 94(5): 531-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24481706

RESUMO

Genetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (u) calcium (Ca) excretion, demonstrate increased intestinal Ca absorption, increased bone Ca resorption, and reduced renal Ca reabsorption, all leading to elevated uCa compared to the parental Sprague-Dawley (SD) rats. GHS rats have increased numbers of vitamin D receptors (VDRs) at each site, with normal levels of 1,25(OH)2D3 (1,25D), suggesting their VDR is undersaturated with 1,25D. We have shown that 1,25D induces a greater increase in uCa in GHS than SD rats. To examine the effect of the increased VDR on the osseous response to 1,25D, we fed GHS and SD rats an ample Ca diet and injected either 1,25D [low dose (LD) 12.5 or high dose (HD) 25 ng/100 g body weight/day] or vehicle (veh) daily for 16 days. Femoral areal bone mineral density (aBMD, by DEXA) was decreased in GHS+LD and GHS+HD relative to GHS+veh, while there was no effect on SD. Vertebral aBMD was lower in GHS compared to SD and further decreased in GHS+HD. Both femoral and L6 vertebral volumetric BMD (by µCT) were lower in GHS and further reduced by HD. Histomorphometry indicated a decreased osteoclast number in GHS+HD compared to GHS+veh or SD+HD. In tibiae, GHS+HD trabecular thickness and number increased, with a 12-fold increase in osteoid volume but only a threefold increase in bone volume. Bone formation rate was decreased in GHS+HD relative to GHS+veh, confirming the mineralization defect. The loss of BMD and the mineralization defect in GHS rats contribute to increased hypercalciuria; if these effects persist, they would result in decreased bone strength, making these bones more fracture-prone. The enhanced effect of 1,25D in GHS rats indicates that the increased VDRs are biologically active.


Assuntos
Densidade Óssea/fisiologia , Calcificação Fisiológica/fisiologia , Calcitriol/farmacologia , Hipercalciúria/fisiopatologia , Animais , Reabsorção Óssea/fisiopatologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiopatologia , Calcificação Fisiológica/efeitos dos fármacos , Calcitriol/metabolismo , Modelos Animais de Doenças , Hipercalciúria/metabolismo , Masculino , Ratos , Ratos Mutantes , Ratos Sprague-Dawley , Receptores de Calcitriol/metabolismo
17.
Am J Physiol Renal Physiol ; 303(3): F431-6, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22647635

RESUMO

Fibroblast growth factor 23 (FGF23) significantly increases with declining renal function, leading to reduced renal tubular phosphate reabsorption, decreased 1,25-dihydroxyvitamin D, and increased left ventricular hypertrophy. Elevated FGF23 is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the mechanisms by which it is regulated are not clear. Patients with chronic kidney disease have decreased renal acid excretion leading to metabolic acidosis, which has a direct effect on bone cell activity. We hypothesized that metabolic acidosis would directly increase bone cell FGF23 production. Using cultured neonatal mouse calvariae, we found that metabolic acidosis increased medium FGF23 protein levels as well as FGF23 RNA expression at 24 h and 48 h compared with incubation in neutral pH medium. To exclude that the increased FGF23 was secondary to metabolic acidosis-induced release of bone mineral phosphate, we cultured primary calvarial osteoblasts. In these cells, metabolic acidosis increased FGF23 RNA expression at 6 h compared with incubation in neutral pH medium. Thus metabolic acidosis directly increases FGF23 mRNA and protein in mouse bone. If these results are confirmed in humans with chronic kidney disease, therapeutic interventions to mitigate acidosis, such as bicarbonate administration, may also lower levels of FGF23, decrease left ventricular hypertrophy, and perhaps even decrease mortality.


Assuntos
Acidose/metabolismo , Osso e Ossos/metabolismo , Fatores de Crescimento de Fibroblastos/biossíntese , Animais , Animais Recém-Nascidos , Reabsorção Óssea/metabolismo , Cálcio/metabolismo , Dióxido de Carbono/metabolismo , Células Cultivadas , Fator de Crescimento de Fibroblastos 23 , Concentração de Íons de Hidrogênio , Camundongos , Técnicas de Cultura de Órgãos , Osteoblastos/metabolismo , Fosfatos/metabolismo , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Crânio/efeitos dos fármacos , Crânio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...