Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Biophys J ; 52(4-5): 321-332, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37160443

RESUMO

The biotech industry has great interest in investigating therapeutic proteins in high concentration environments like human serum. The fluorescence detection system (Aviv-FDS) allows the performance of analytical ultracentrifuge (AUC) sedimentation velocity (SV) experiments in tracer or BOLTS protocols. Here, we compare six pooled human serum samples by AUC SV techniques and demonstrate the potential of this technology for characterizing therapeutic antibodies in serum. Control FDS SV experiments on serum alone reveal a bilirubin-HSA complex whose sedimentation is slowed by solution nonideality and exhibits a Johnston-Ogston (JO) effect due to the presence of high concentrations of IgG. Absorbance SV experiments on diluted serum samples verify the HSA-IgG composition as well as a significant IgM pentamer boundary at 19 s. Alexa-488 labeled Simponi (Golimumab) is used as a tracer to investigate the behavior of a therapeutic monoclonal antibody (mAb) in serum, and the sedimentation behavior of total IgG in serum. Serum dilution experiments allow extrapolation to zero concentration to extract so, while global direct boundary fitting with SEDANAL verifies the utility of a matrix of self- and cross-term phenomenological nonideality coefficients (ks and BM1) and the source of the JO effect. The best fits include weak reversible association (~ 4 × 103 M-1) between Simponi and total human IgG. Secondary mAbs to human IgG and IgM verify the formation of a 10.2 s 1:1 complex with human IgG and a 19 s complex with human IgM pentamers. These results demonstrate that FDS AUC allows a range of approaches for investigating therapeutic antibodies in human serum.


Assuntos
Imunoglobulina G , Humanos , Fluorescência , Imunoglobulina M , Ultracentrifugação/métodos
2.
Neurosci Lett ; 503(2): 83-6, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21871532

RESUMO

TREK1 is a widely expressed background potassium channel. Similar to mice treated with selective serotonin reuptake inhibitors (SSRIs), TREK1 knockout mice are resistant to depression-like behavior and have elevated serotonin levels leading to speculation that TREK1 inhibition may contribute to the therapeutic effects of SSRIs. This study examined how chronic fluoxetine administration and a common functional polymorphism in the serotonin-transporter-linked promoter region (5-HTTLPR) influence cortical TREK1 expression in 24 rhesus monkeys. The short rh5-HTTLPR allele as well as female gender were associated with reduced cortical TREK1 protein expression but chronic SSRI administration had no effect. These results suggest that serotonin may influence TREK1, but that chronic SSRI treatment does not result in long lasting changes in cortical TREK1 protein expression. TREK1 gender differences may be related to gender differences in serotonin and require further research.


Assuntos
Química Encefálica/genética , Córtex Cerebral/metabolismo , Fluoxetina/farmacologia , Canais de Potássio de Domínios Poros em Tandem/biossíntese , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Alelos , Animais , Western Blotting , Córtex Cerebral/efeitos dos fármacos , Feminino , Genótipo , Macaca mulatta , Masculino , Tamanho do Órgão/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Serotonina/metabolismo , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...