Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(14): 10165-10183, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38533789

RESUMO

In this study, Ti3C2Tx underwent laser treatment to reshape it, resulting in the formation of a TiO2/Ti3C2Tx heterojunction. The interaction with laser light induced the formation of spherical TiO2 composed of an anatase-rutile phase on the Ti3C2Tx surface. Such a heterostructure was loaded over a titania nanotube (TNT) layer, and the surface area was enhanced through immersion in a TiCl4 solution followed by thermal treatment. Consequently, the photon-to-electron conversion efficiency exhibits a 10-fold increase as compared to bare TNT. Moreover, for the sample produced with optimized conditions, five times higher photoactivity is observed in comparison to bare TNT. It was shown that under visible light irradiation the most photoactive heterojunction based on the tubular layer reveals a substantial drop in the charge transfer resistance of about 32% with respect to the dark condition. This can be attributed to the narrower band gaps of the modified material and improvement of the separation efficiency of the photogenerated electron-hole pairs. Overall results suggest that this investigation underscores TiO2/Ti3C2Tx as a promising noble-metal-free material that enhances both the electrochemical and photoelectrochemical performances of electrode materials based on TNT that can be further used in light-harvesting applications.

2.
J Agric Food Chem ; 72(11): 5609-5624, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38467054

RESUMO

This study investigates the impact of plasma-seed interaction on germination and early plant development, focusing on Arabidopsis thaliana and Brassica napus. The investigation delves into changes in chemical composition, water absorption, and surface morphology induced by plasma filaments generated in synthetic air. These analyses were conducted using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Although plasma treatment enhanced water absorption and modified surface chemistry, its impact on germination demonstrated species- and context-dependent variations. Notably, the accelerated germination and morphogenesis of seedlings in microbiome-enriched (MB+) soil could be achieved also in microbiome-deprived (MB-) soil by short-term plasma treatment of seeds. Remarkably, the positive effects of plasma treatment on early developmental events (germination, morphogenesis) and later events (formation of inflorescences) were more pronounced in the context of MB- soil but were accompanied by a slight decrease in disease resistance, which was not detected in MB+ soil. The results underscore the intricate dynamics of plasma-plant interactions and stress the significance of accounting for the soil microbiome while designing experiments with potential field application.


Assuntos
Arabidopsis , Germinação , Solo , Sementes , Plântula , Água/farmacologia
3.
Polymers (Basel) ; 13(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34833322

RESUMO

Raman spectroscopy is one of the most used biodetection techniques. However, its usability is hampered in the case of low concentrated substances because of the weak intensity of the Raman signal. To overcome this limitation, the use of drop coating deposition Raman spectroscopy (DCDRS), in which the liquid samples are allowed to dry into well-defined patterns where the non-volatile solutes are highly concentrated, is appropriate. This significantly improves the Raman sensitivity when compared to the conventional Raman signal from solution/suspension. As DCDRS performance strongly depends on the wetting properties of substrates, we demonstrate here that the smooth hydrophobic plasma polymerized fluorocarbon films prepared by magnetron sputtering (contact angle 108°) are well-suited for the DCDRS detection of liposomes. Furthermore, it was proved that even better improvement of the Raman signal might be achieved if the plasma polymer surfaces are roughened. In this case, 100% higher intensities of Raman signal are observed in comparison with smooth fluorocarbon films. As it is shown, this effect, which has no influence on the profile of Raman spectra, is connected with the increased hydrophobicity of nanostructured fluorocarbon films. This results in the formation of dried liposomal deposits with smaller diameters and higher preconcentration of liposomes.

4.
Sci Rep ; 11(1): 6415, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742023

RESUMO

A mechanical time-of-flight filter intended for measurement of velocities of nanoparticles exiting a gas aggregation source has been developed. Several configurations maximizing simplicity, throughput or resolution are suggested and investigated both theoretically and experimentally. It is shown that the data measured using such filters may be easily converted to the real velocity distribution with high precision. Furthermore, it is shown that properly designed filters allow for the monitoring of the velocity of nanoparticles even at the conditions with extremely low intensity of the nanoparticle beam.

5.
Materials (Basel) ; 14(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477840

RESUMO

Plasma polymer films typically consist of very short fragments of the precursor molecules. That rather limits the applicability of most plasma polymerisation/plasma-enhanced chemical vapour deposition (PECVD) processes in cases where retention of longer molecular structures is desirable. Plasma-assisted vapour thermal deposition (PAVTD) circumvents this limitation by using a classical bulk polymer as a high molecular weight "precursor". As a model polymer in this study, polylactic acid (PLA) has been used. The resulting PLA-like films were characterised mostly by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy. The molecular structure of the films was found to be tunable in a broad range: from the structures very similar to bulk PLA polymer to structures that are more typical for films prepared using PECVD. In all cases, PLA-like groups are at least partially preserved. A simplified model of the PAVTD process chemistry was proposed and found to describe well the observed composition of the films. The structure of the PLA-like films demonstrates the ability of plasma-assisted vapour thermal deposition to bridge the typical gap between the classical and plasma polymers.

6.
Mater Sci Eng C Mater Biol Appl ; 119: 111513, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321606

RESUMO

Infection associated with titanium based implants remains the most serious problem in implant surgery hence it is important to find optimal strategies to prevent infections. In the present study, we investigated the surface properties, antibacterial activity and biocompatibility of nanocomposite coatings based on an amorphous hydrocarbon (a-C:H) film containing copper nanoparticles (CuNPs) deposited on Ti discs via a gas aggregation cluster source. Three different Cu/a-C:H coatings with approximately the same amount of embedded CuNPs with and without barrier a-C:H layer were fabricated. The obtained results revealed that different structures of the produced coatings have significantly different release rates of Cu ions from the coatings into the aqueous media. This subsequently influences the antibacterial efficiency and osteoblast cell viability of the treated coatings. Coatings with the highest number of CuNPs resulted in excellent antibacterial activity exhibiting approximately 4 log reduction of E.coli and S.aureus after 24 h incubation. The cytotoxicity study revealed that after 7 day cell seeding, even the coating with the highest Cu at.% (4 at.%) showed a cell viability of Ì´90%. Consequently, the coating, formed with a properly tailored number of CuNPs and a-C:H barrier thickness offer a strong antibacterial effect without any harm to osteoblast cells.


Assuntos
Anti-Infecciosos , Nanocompostos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Staphylococcus aureus , Titânio/farmacologia
7.
ACS Appl Mater Interfaces ; 12(21): 23655-23666, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32374146

RESUMO

One of the leading causes of failure for any bone implant is implant-associated infections. The implant-bone interface is in fact the crucial site of infection where both the microorganisms and cells compete to populate the newly introduced implant surface. Most of the work dealing with this issue has focused on the design of implant coatings capable of preventing infection while ignoring cell proliferation or vice versa. The present study is therefore focused on investigating the antibacterial and biological properties of nanocomposite coatings based on an amorphous hydrocarbon (a-C:H) matrix containing silver nanoparticles (AgNPs). a-C:H coatings with varying silver concentrations were generated directly on medical grade titanium substrates using a combination of a gas aggregation source (GAS) and a plasma-enhanced chemical vapor deposition (PE-CVD) process. The obtained results revealed that the surface silver content increased from 1.3 at % to 5.3 at % by increasing the used DC magnetron current in the GAS from 200 to 500 mA. The in vitro antibacterial assays revealed that the nanocomposites with the highest number of silver content exhibited excellent antibacterial activities resulting in a 6-log reduction of Escherichia coli and a 4-log reduction of Staphylococcus aureus after 24 h of incubation. An MTT assay, fluorescence live/dead staining, and SEM microscopy observations of MC3T3 cells seeded on the uncoated and coated Ti substrates also showed that increasing the amount of AgNPs in the nanocomposites had no notable impact on their cytocompatibility, while improved cell proliferation was especially observed for the nanocomposites possessing a low amount of AgNPs. These controllable Ag/a-C:H nanocomposites on Ti substrates, which simultaneously provide an excellent antibacterial performance and good biocompatibility, could thus have promising applications in orthopedics and other biomedical implants.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Nanocompostos/química , Próteses e Implantes , Prata/farmacologia , Titânio/química , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/toxicidade , Escherichia coli/efeitos dos fármacos , Hidrocarbonetos/química , Hidrocarbonetos/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Nanocompostos/toxicidade , Prata/química , Prata/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Molhabilidade
8.
Nanomaterials (Basel) ; 10(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316367

RESUMO

Surface-enhanced fluorescence (SEF) requires the absorption/emission band of the fluorophore, the localized surface plasmon resonance (LSPR) of the nanostructure and the excitation wavelength to fall in the same (or very close) spectral range. In this paper, we monitor the SEF intensity and lifetime dependence of riboflavin (vitamin B2) adsorbed on a spacer-modified Ag substrate with respect to the thickness of the spacer. The substrates were formed by silver nanoislands deposited onto magnetron-sputtered polytetrafluoroethylene (ms-PTFE). The spacer was formed by the ms-PTFE layer with the thickness ranging from ~5 to 25 nm. The riboflavin dissolved in dimethylsulfoxide (DMSO) at a 10 µM concentration forms, at the ms-PTFE surface, a homogeneous layer of adsorbed molecules corresponding to a monomolecular layer. The microspectroscopic measurements of the adsorbed layer were performed through a sessile droplet; our study has shown the advantages and limitations of this approach. Time-resolved fluorescence enabled us to determine the enhanced fluorescence quantum yield due to the shortening of the radiative decay in the vicinity of the plasmonic surface. For the 5 nm ms-PTFE layer possessing the largest (estimated 4×) fluorescence enhancement, the quantum yield was increased 2.3×.

9.
Materials (Basel) ; 12(15)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349580

RESUMO

Magnetron sputtering is a well-known technique that is commonly used for the deposition of thin compact films. However, as was shown in the 1990s, when sputtering is performed at pressures high enough to trigger volume nucleation/condensation of the supersaturated vapor generated by the magnetron, various kinds of nanoparticles may also be produced. This finding gave rise to the rapid development of magnetron-based gas aggregation sources. Such systems were successfully used for the production of single material nanoparticles from metals, metal oxides, and plasma polymers. In addition, the growing interest in multi-component heterogeneous nanoparticles has led to the design of novel systems for the gas-phase synthesis of such nanomaterials, including metal/plasma polymer nanoparticles. In this featured article, we briefly summarized the principles of the basis of gas-phase nanoparticles production and highlighted recent progress made in the field of the fabrication of multi-component nanoparticles. We then introduced a gas aggregation source of plasma polymer nanoparticles that utilized radio frequency magnetron sputtering of a polymeric target with an emphasis on the key features of this kind of source. Finally, we presented and discussed three strategies suitable for the generation of metal/plasma polymer multi-core@shell or core-satellite nanoparticles: the use of composite targets, a multi-magnetron approach, and in-flight coating of plasma polymer nanoparticles by metal.

10.
Antibiotics (Basel) ; 7(3)2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30126109

RESUMO

Urgent need for innovative and effective antibacterial coatings in different fields seems to have triggered the development of numerous strategies for the production of such materials. As shown in this short overview, plasma based techniques arouse considerable attention that is connected with the possibility to use these techniques for the production of advanced antibacterial Ag/plasma polymer coatings with tailor-made functional properties. In addition, the plasma-based deposition is believed to be well-suited for the production of novel multi-functional or stimuli-responsive antibacterial films.

11.
Beilstein J Nanotechnol ; 9: 861-869, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600147

RESUMO

Background: Antibacterial materials are of high importance for medicine, and for the production and conservation of food. Among these materials, polymer films with metal nanoparticles (NPs) are of considerable interest for many practical applications. Results: The paper describes a novel approach for the formation of bactericidal polymer thin films (polystyrene in this case), produced by spin-coating, with Ti and Cu NPs deposited from cluster beams. Ti NPs are treated in three different ways in order to study different approaches for oxidation and, thus, efficiency in formation of the particles with semiconducting properties required for the catalytic formation of reactive oxygen species. Cu NPs are used as deposited. Partial NP embedding into polystyrene is realised in a controllable manner using thermal annealing in order to improve surface adhesion and make the particles resistant against wash-out. The formed composite films with TiO x and Cu species are tested as bactericidal media using E.coli bacteria as model microorganisms. Conclusion: The obtained results show considerable efficiency in destroying the bacteria and a good possibility of multiple re-use of the same composite films making the suggested approach attractive for the cases requiring reusable polymer-based antibacterial media.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 197: 202-207, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29398590

RESUMO

Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism.

13.
Beilstein J Nanotechnol ; 8: 2002-2014, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046847

RESUMO

This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.

14.
Sci Rep ; 7(1): 8514, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819149

RESUMO

Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.

15.
Sci Rep ; 7(1): 4293, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655920

RESUMO

Silver nanorod arrays prepared by oblique angle deposition (AgOADs) represent versatile, simple and inexpensive substrates for high sensitivity surface enhanced Raman scattering (SERS) applications. Their anisotropic nature suggests that their optical responses such as the SERS signal, the depolarization ratio, reflectivity and ellipsometric parameters critically depend on the states of polarization, nanorod angular arrangement and specific illumination-observation geometry. SERS polarization and angular dependences of AgOADs were measured using methylene blue (MB) molecule. Our study constitutes, to our knowledge, the most detailed investigation of such characteristics of plasmonic nanostructures to date. This is due to the 90°-scattering geometry used in which two out of three Euler angles determining the nanorod spatial orientation and four polarization combinations can be varied simultaneously. We attributed the anisotropic optical response to anisotropic (pseudo)refractive index caused by different periodicity of our structures in different directions since the plasmonic properties were found rather isotropic. For the first time we demonstrate very good correspondence between SERS intensities and ellipsometric parameters for all measured configurations as compared on the basis of the surface selection rules. Obtained results enable quantitative analysis of MB Raman tensor elements, indicating that the molecules adsorb predominantly with the symmetry axis perpendicular to the surface.

16.
Phys Chem Chem Phys ; 19(1): 388-393, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27905608

RESUMO

Evaporation of a drop of biomolecular solution on a solid surface typically creates a ring-shaped drying pattern, formed by the so-called "coffee ring" effect. The size and shape of the "coffee ring" pattern is strongly dependent on the properties of the surface as well as on the deposited molecular solution or suspension. In this paper, we tested six types of surfaces differing in their physico-chemical surface characteristics (contact angles, wettability and roughness) as well as in the presence or absence of a base metal layer. The tested surfaces include two fluorocarbon coated metallic surfaces (commercial SpectRIM™ from Tienta Sciences, Inc. based on a smoothed stainless steel and non-commercial aluminium surface), three silanized glass surfaces and polished CaF2. The results showed that the formation of a "coffee ring" was influenced by surface wettability as well as by lipid concentration in the drop. Drop coating deposition Raman (DCDR) spectroscopy was used to compare the ability of the tested surfaces to preconcentrate molecules in the ring and therefore improve detection sensitivity. It was shown that surfaces with a contact angle of 90° and higher produce smaller drying patterns than more hydrophilic surfaces. In these drying patterns, the model liposomes were more efficiently preconcentrated, which resulted in a higher Raman signal of the liposomes. The applicability of surfaces with static contact angles less than 90°, high water contact angle hysteresis and no metal layer (silanized glass, CaF2) is limited to samples with high liposome concentrations.

17.
J Biomed Mater Res A ; 100(4): 1016-32, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22307998

RESUMO

Cell behavior depends strongly on the physical and chemical properties of the material surface, for example, its chemistry and topography. The authors have therefore assessed the influence of materials of different chemical composition (i.e., glass substrates with and without TiO(2) films in anatase form) and different surface roughness (R(a) = 0, 40, 100, or 170 nm) on the adhesion, proliferation, and osteogenic differentiation of human osteoblast-like MG63 cells. On day 1 after seeding, the largest cell spreading area was found on flat TiO(2) films (R(a) = 0 nm). On TiO(2) films with R(a) = 170 nm, the cell spreading area was larger and the number of initially adhering cells was higher than the values on the corresponding uncoated glass. On day 3 after seeding, the cell number was higher on the TiO(2) films (R(a) = 0 and 40 nm) than on the corresponding glass substrates and the standard polystyrene dishes. On day 7, all TiO(2) films contained higher cell numbers than the corresponding glass substrates, and the cells on the TiO(2) films with R(a) = 40 and 100 nm also contained a higher concentration of ß-actin. These results indicate that TiO(2) coating had a positive influence on the adhesion and subsequent proliferation of MG63 cells. In addition, on all investigated materials, the cell population density achieved on day 7 decreased with increasing surface roughness. The concentration of osteocalcin, measured per mg of protein, was significantly lower in the cells on rougher TiO(2) films (R(a) = 100 and 170 nm) than in the cells on the polystyrene dishes. Thus, it can be concluded that the adhesion, growth, and phenotypic maturation of MG63 cells were controlled by the interplay between the material chemistry and surface topography, and were usually better on smoother and TiO(2)-coated surfaces than on rougher and uncoated glass substrates.


Assuntos
Divisão Celular , Osteoblastos/citologia , Titânio/química , Adesão Celular , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Nanotecnologia , Propriedades de Superfície
18.
Biomacromolecules ; 12(4): 1058-66, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21381652

RESUMO

A new route for coating various substrates with antifouling polymer layers was developed. It consisted in deposition of an amino-rich adhesion layer by means of RF magnetron sputtering of Nylon 6,6 followed by the well-controlled, surface-initiated atom transfer radical polymerization of antifouling polymer brushes initiated by bromoisobutyrate covalently attached to amino groups present in the adhesion layer. Polymer brushes of hydroxy- and methoxy-capped oligoethyleneglycol methacrylate and carboxybetaine acrylamide were grafted from bromoisobutyrate initiator attached to a 15 nm thick amino-rich adhesion layer deposited on gold, silicon, polypropylene, and titanium-aluminum-vanadium alloy surfaces. Well-controlled polymerization kinetics made it possible to control the thickness of the brushes at a nanometer scale. Zero fouling from single protein solutions and a reduction of more than 90% in the fouling from blood plasma observed on the uncoated surfaces was achieved. The feasibility of functionalization with bioactive compounds was tested by covalent attachment of streptavidin onto poly(oligoethylene glycol methacrylate) brush and subsequent immobilization of model antibodies and oligonucleotides. The procedure is nondestructive and does not require any chemical preactivation or the presence of reactive groups on the substrate surface. Contrary to current antifouling modifications, the developed coating can be built on various classes of substrates and preserves its antifouling properties even in undiluted blood plasma. The new technique might be used for fabrication of biotechnological and biomedical devices with tailor-made functions that will not be impaired by fouling from ambient biological media.


Assuntos
Proteínas/química , Microscopia de Força Atômica , Análise Espectral/métodos , Propriedades de Superfície
19.
Chemphyschem ; 11(7): 1382-9, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-19967733

RESUMO

Plasma treatment of surfaces as a sterilisation or decontamination method is a promising approach to overcome limitations of conventional techniques. The precise characterisation of the employed plasma discharges, the application of sensitive surface diagnostic methods and targeted experiments to separate the effects of different agents, have led to rapid progress in the understanding of different relevant elementary processes. This contribution provides an overview of the most relevant and recent results, which reveal the importance of chemical sputtering as one of the most important processes for the elimination of biological residuals. Selected studies on the interaction of plasmas with bacteria, proteins and polypeptides are highlighted, and investigations employing beams of atoms and ions confirming the prominent role of chemical sputtering are presented. With this knowledge, it is possible to optimize the plasma treatment for decontamination/sterilisation purposes in terms of discharge composition, density of active species and UV radiation intensity.


Assuntos
Descontaminação/métodos , Esterilização/métodos , Humanos , Propriedades de Superfície , Temperatura
20.
Innate Immun ; 14(2): 89-97, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18713725

RESUMO

Immune-stimulating microbiological components like lipopolysaccharide (LPS), lipoteichoic acid (LTA) and zymosan bound onto surfaces lead to severe problems when brought in contact with the organism via surgical instruments or implants. We have shown, in recent studies, that it is possible to detect different immune-stimulating components directly on the surface, via an indirect detection method, using human whole-blood and the monocyte reaction to measure the inflammatory mediator release (IL-1beta) by ELISA. With regard to the inactivation of pyrogenic substances, we present a method based on the application of a low-pressure microwave plasma discharge working at low temperatures. We found a fast (10 s to a few minutes) removal rate of the immune-stimulating competence for LPS, LTA and zymosan. To mimic the bacterial cell-wall, LPS in combination with muramyl dipeptide was employed and the decreasing rate of the inflammatory signal did not differ from pure LPS.


Assuntos
Interleucina-1beta/sangue , Lipopolissacarídeos/isolamento & purificação , Ácidos Teicoicos/isolamento & purificação , Zimosan/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Lipopolissacarídeos/imunologia , Pirogênios/isolamento & purificação , Reprodutibilidade dos Testes , Ácidos Teicoicos/imunologia , Zimosan/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...