Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Assoc Res Otolaryngol ; 25(1): 53-61, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238525

RESUMO

PURPOSE: One of the major reasons that totally implantable cochlear microphones are not readily available is the lack of good implantable microphones. An implantable microphone has the potential to provide a range of benefits over external microphones for cochlear implant users including the filtering ability of the outer ear, cosmetics, and usability in all situations. This paper presents results from experiments in human cadaveric ears of a piezofilm microphone concept under development as a possible component of a future implantable microphone system for use with cochlear implants. This microphone is referred to here as a drum microphone (DrumMic) that senses the robust and predictable motion of the umbo, the tip of the malleus. METHODS: The performance was measured by five DrumMics inserted in four different human cadaveric temporal bones. Sensitivity, linearity, bandwidth, and equivalent input noise were measured during these experiments using a sound stimulus and measurement setup. RESULTS: The sensitivity of the DrumMics was found to be tightly clustered across different microphones and ears despite differences in umbo and middle ear anatomy. The DrumMics were shown to behave linearly across a large dynamic range (46 dB SPL to 100 dB SPL) across a wide bandwidth (100 Hz to 8 kHz). The equivalent input noise (over a bandwidth of 0.1-10 kHz) of the DrumMic and amplifier referenced to the ear canal was measured to be about 54 dB SPL in the temporal bone experiment and estimated to be 46 dB SPL after accounting for the pressure gain of the outer ear. CONCLUSION: The results demonstrate that the DrumMic behaves robustly across ears and fabrication. The equivalent input noise performance (related to the lowest level of sound measurable) was shown to approach that of commercial hearing aid microphones. To advance this demonstration of the DrumMic concept to a future prototype implantable in humans, work on encapsulation, biocompatibility, and connectorization will be required.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Orelha Média , Meato Acústico Externo , Cadáver
3.
Artigo em Inglês | MEDLINE | ID: mdl-38083319

RESUMO

In this work, a methodology for assessing the impact of implantation surgery on laboratory mice on behavior was created. The study included the design of several implants fabricated on various printed circuit board (PCB) technologies with overall diameters between 26-28mm and weights between 4.5-6.5g. 11 adult CD1 mice were implanted with the devices and their behavior was analyzed using common behavioral benchmark tests. The results show that implants designed to be 10% of the animal's body weight showed no adverse effects on mobility or social behavior. These results illustrate a method to identify and reduce the adverse behavioral changes inherent to device implantation. Additional considerations for implant surgery are provided. These results are validated with the implantation of a Bluetooth Low Energy (BLE) wireless sensor tag. The implanted wireless tag showed an average Received Signal Strength Indicator (RSSI) of 62.96dBm with a standard deviation of 4.95dBm and a variance of 24.5 dBm2. The high RSSI and variance values show that the implant was working well inside of the mouse's body and that the mouse was fully recovered and readily exploring its surroundings.Clinical Relevance-This work 1) studies the behavioral impact of implantable wireless biopotential devices. This will help clinical researchers conducting behavioral studies using sensor implants. 2) demonstrates a working implanted BLE wireless model inside of a mouse. Various wireless connectivity metrics are studied.


Assuntos
Roedores , Tecnologia sem Fio , Camundongos , Animais , Próteses e Implantes , Tecnologia , Comportamento Social
4.
Sensors (Basel) ; 23(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766036

RESUMO

Detecting volatile organic compounds is a fundamental step in water quality analysis. Methylisoborneol (MIB) provides a lousy odor to water, whereas geosmin (GEO) is responsible for its sour taste. A widely-used technique for their detection is gas-phase chromatography. On the other hand, an electronic nose from organic thin-film transistors is a cheaper and faster alternative. Poly(2,5-bis(3-tetradecyl-thiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) features semiconducting properties suitable for organic electronics. However, in order to expose the active layer in a bottom-gate transistor structure with photolithographically patterned electrodes, a cross-linked dielectric such as poly(4-vinyl phenol) (PVP) is necessary. In this work, the cross-linking was demonstrated using FTIR and Raman spectroscopies, as well as high-k capacitors with a dielectric constant of 5.3. The presence of enhanced crystallinity with terrace formation in the semiconducting film was confirmed with UV-visible spectrophotometry, atomic force microscopy, and X-ray diffraction. Finally, for the first time, a PBTTT-C14 transistor on cross-linked PVP was shown to respond to isoborneol with a sensitivity of up to 6% change in mobility per ppm. Due to its similarity to MIB, a system comprising these sensors must be investigated in the future as a tool for sanitation companies in real-time water quality monitoring.

5.
Opt Express ; 31(10): 16709-16718, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157744

RESUMO

Optical sectioning structured illumination microscopy (OS-SIM) provides optical sectioning capability in wide-field microscopy. The required illumination patterns have traditionally been generated using spatial light modulators (SLM), laser interference patterns, or digital micromirror devices (DMDs) which are too complex to implement in miniscope systems. MicroLEDs have emerged as an alternative light source for patterned illumination due to their extreme brightness capability and small emitter sizes. This paper presents a directly addressable striped microLED microdisplay with 100 rows on a flexible cable (70 cm long) for use as an OS-SIM light source in a benchtop setup. The overall design of the microdisplay is described in detail with luminance-current-voltage characterization. OS-SIM implementation with a benchtop setup shows the optical sectioning capability of the system by imaging within a 500 µm thick fixed brain slice from a transgenic mouse where oligodendrocytes are labeled with a green fluorescent protein (GFP). Results show improved contrast in reconstructed optically sectioned images of 86.92% (OS-SIM) compared with 44.31% (pseudo-widefield). MicroLED based OS-SIM therefore offers a new capability for deep tissue widefield imaging.

6.
Adv Mater Technol ; 8(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37007916

RESUMO

Studies of electrosensory systems have led to insights into to a number of general issues in biology. However, investigations of these systems have been limited by the inability to precisely control spatial patterns of electrosensory input. In this paper, an electrode array and a system to selectively stimulate spatially restricted regions of an electroreceptor array is presented. The array has 96 channels consisting of chrome/gold electrodes patterned on a flexible parylene-C substrate and encapsulated with another parylene-C layer. The conformability of the electrode array allows for optimal current driving and surface interface conditions. Recordings of neural activity at the first central processing stage in weakly electric mormyrid fish support the potential of this system for high spatial resolution stimulation and mapping of electrosensory systems.

7.
ArXiv ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38196743

RESUMO

Objective: We present the "UmboMic," a prototype piezoelectric cantilever microphone designed for future use with totally-implantable cochlear implants. Methods: The UmboMic sensor is made from polyvinylidene difluoride (PVDF) because of its low Young's modulus and biocompatibility. The sensor is designed to fit in the middle ear and measure the motion of the underside of the eardrum at the umbo. To maximize its performance, we developed a low noise charge amplifier in tandem with the UmboMic sensor. This paper presents the performance of the UmboMic sensor and amplifier in fresh cadaveric human temporal bones. Results: When tested in human temporal bones, the UmboMic apparatus achieves an equivalent input noise of 32.3 dB SPL over the frequency range 100 Hz to 7 kHz, good linearity, and a flat frequency response to within 10 dB from about 100 Hz to 6 kHz. Conclusion: These results demonstrate the feasibility of a PVDF-based microphone when paired with a low-noise amplifier. The reported UmboMic apparatus is comparable in performance to a conventional hearing aid microphone. Significance: The proof-of-concept UmboMic apparatus is a promising step towards creating a totally-implantable cochlear implant. A completely internal system would enhance the quality of life of cochlear implant users.

8.
Adv Mater Technol ; 8(19)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38559403

RESUMO

MicroLEDs provide unrivaled luminance and operating lifetime, which has led to significant activity using devices for display and non-display applications. The small size and high power density of microLEDs, however, causes increased adverse heating effects which can limit performance. A new generation of electrically insulating high thermal conductivity materials, such as alumina, has been proposed to mitigate these thermal effects when used as a substrate as an alternative to glass. This strategy then could be used as a method of passive heatsinking to improve the overall performance of the microLED. In this work, a newly available material, an 80 micron thick alumina ceramic substrate, is shown to yield a 30 % improvement on average in the maximum current drive over a glass substrate.

9.
ACS Appl Mater Interfaces ; 14(15): 17682-17690, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35394742

RESUMO

The present study pioneered an oxygen migration-driven metal to insulator transition Mott memory, a new type of nonvolatile memory using lanthanum titanium oxide (LTO). We first show the reset first bipolar property without an initial electroforming process in LTO. We used oxygen-deficient ZnO as an interlayer between LTO and a W electrode to clarify whether oxygen migration activates LTO as the Mott transition. ZnO oxygen deficiency provides oxygen ion migration paths as well as a reservoir, facilitating oxygen migration from LTO to the W electrode. Thus, including the ZnO interlayer improved oxygen migration between LTO and the W electrode, achieving a 10-fold increased on/off current ratio. The current research contributes to a better understanding of valence change Mott memory by exploring the LTO resistive switching mechanism and ZnO interlayer influences on the oxygen migration process.

10.
Opt Express ; 29(10): 14841-14852, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985197

RESUMO

Micro light-emitting diode (microLED) structures were modeled and validated with fabricated devices to investigate p-type GaN (pGaN) contact size dependence on power output efficiency. Two schemes were investigated: a constant 10 µm diameter pGaN contact and varying microLED sizes and a constant 10 µm diameter microLED with varying contact sizes. Modeled devices show a 17% improvement in output power by increasing the microLED die size. Fabricated devices followed the same trend with a 70% improvement in power output. Modeled microLED devices of a constant size and varying inner contact sizes show optimized power output at different current densities for various contact sizes. In particular, lower current densities show optimized output for smaller pGaN contacts and trend towards larger contacts for higher current densities in a balance between undesirable efficiency losses at high-current injection and preventing surface recombination losses. We show that for all device geometries, it is preferential to shrink the pGaN contact to maximize efficiency by suppressing surface recombination losses and further improvements should be carefully considered to optimize efficiency for a desired operational brightness.

11.
Nanoscale ; 13(23): 10365-10384, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33988208

RESUMO

We report nanoscale Eu0.5Ba0.5TiO3, a multiferroic in the bulk and candidate in the search to quantify the electric dipole moment of the electron. Eu0.5Ba0.5TiO3, in the form of nanoparticles and other nanostructures is interesting for nanocomposite integration, biomedical imaging and fundamental research, based upon the prospect of polarizability, f-orbital magnetism and tunable optical/radio luminescence. We developed a [non-hydrolytic]sol-[H2O-activated]gel route, derived from in-house metallic Ba(s)/Eu(s) alkoxide precursors and Ti{(OCH(CH3)2}4. Two distinct nanoscale compounds of Ba:Ti:Eu with the parent perovskite crystal structure were produced, with variable dielectric, magnetic and optical properties, based on altering the oxidizing/reducing conditions. Eu0.5Ba0.5TiO3 prepared under air/O2 atmospheres produced a spherical core-shell nanostructure (30-35 nm), with perovskite Eu0.5Ba0.5TiO3 nanocrystal core-insulating oxide shell layer (∼3 nm), presumed a pre-pyrochlore layer abundant with Eu3+. Fluorescence spectroscopy shows a high intensity 5D0→7F2 transition at 622 nm and strong red fluorescence. The core/shell structure demonstrated excellent capacitive properties: assembly into dielectric thin films gave low conductivity (2133 GΩ mm-1) and an extremely stable, low loss permittivity of εeff∼25 over a wide frequency range (tan δ < 0.01, 100 kHz-2 MHz). Eu0.5Ba0.5TiO3 prepared under H2/argon produced more irregular shaped nanocrystals (20-25) nm, with a thin film permittivity around 4 times greater (εeff 101, tan δ < 0.05, 10 kHz-2 MHz, σ∼59.54 kΩ mm-1). Field-cooled magnetization values of 0.025 emu g-1 for EBTO-Air and 0.84 emu g-1 for EBTO-Argon were observed. X-ray photoelectron spectroscopy analysis reveals a complex interplay of EuII/III/TiIII/IV configurations which contribute to the observed ferroic and fluorescence behavior.

12.
Biomed Opt Express ; 12(3): 1651-1665, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33796379

RESUMO

We have developed a flexible optical imaging system (FOIS) to assess systemic lupus erythematosus (SLE) arthritis in the finger joints. While any part of the body can be affected, arthritis in the finger joints is one of the most common SLE manifestations. There is an unmet need for accurate, low-cost assessment of lupus arthritis that can be easily performed at every clinic visit. Current imaging methods are imprecise, expensive, and time consuming to allow for frequent monitoring. Our FOIS can be wrapped around joints, and multiple light sources and detectors gather reflected and transmitted light intensities. Using data from two SLE patients and two healthy volunteers, we demonstrate the potential of this FOIS for assessment of arthritis in SLE patients.

13.
IEEE Sens J ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-37786543

RESUMO

This paper presents an implantable microphone for sensing the displacement of the umbo, the end of the malleus where it attaches to the center tip of the cone-shaped tympanic membrane. The sensor comprises a piezoelectric polyvinylidene fluoride (PVDF) film with copper-nickel electrodes suspended across a brass cylinder. The cylinder is oriented so that the umbo pushes on the film center, causing a static and acoustically-driven dynamic film displacement. An amplifier filters the resulting piezoelectric charge to produce an output signal. The sensor enables the full implantation of assistive hearing devices, which can restore hearing without inhibiting the user's lifestyle, while enabling better sound localization in noisy environments.

14.
Materials (Basel) ; 14(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375044

RESUMO

Organic thin-film transistors (OTFTs) are miniaturized devices based upon the electronic responses of organic semiconductors. In comparison to their conventional inorganic counterparts, organic semiconductors are cheaper, can undergo reversible doping processes and may have electronic properties chiefly modulated by molecular engineering approaches. More recently, OTFTs have been designed as gas sensor devices, displaying remarkable performance for the detection of important target analytes, such as ammonia, nitrogen dioxide, hydrogen sulfide and volatile organic compounds (VOCs). The present manuscript provides a comprehensive review on the working principle of OTFTs for gas sensing, with concise descriptions of devices' architectures and parameter extraction based upon a constant charge carrier mobility model. Then, it moves on with methods of device fabrication and physicochemical descriptions of the main organic semiconductors recently applied to gas sensors (i.e., since 2015 but emphasizing even more recent results). Finally, it describes the achievements of OTFTs in the detection of important gas pollutants alongside an outlook toward the future of this exciting technology.

15.
J Org Chem ; 85(19): 12731-12739, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32893633

RESUMO

Although long acenes remain a key class of π-conjugated molecules for numerous applications, photoinduced oxidation upon exposure of the acene to light, often through sensitization of 1O2, is an important reaction requiring mitigation for most applications. In response to this ongoing challenge, this paper presents a series of four new diarylethynyl-substituted long acenes-three tetracenes and one anthradithiophene-in which the arylene pendants are either benzene, naphthalene, or anthracene. UV/vis and fluorescence spectroscopy reveals that the anthracene-substituted derivatives fluoresce poorly (Φ < 0.01). Although all four long acenes react with 1O2 at expected rates when an external photosensitizer is included and show the expected changes in fluorescence to accompany these reactions, the anthracene-substituted derivatives resist direct photoinduced oxidation. Through a combination of mechanistic experiments, we conclude that rapid nonradiative decay of the anthracene-substituted derivatives, perhaps because of inter-arene torsions that emerge in theoretical geometry optimizations, makes these compounds poor photosensitizers for 1O2 or other reactive oxygen species. This discovery opens new design possibilities for extended acene structures with improved photochemical stability.

16.
ACS Sens ; 5(6): 1514-1534, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32410445

RESUMO

Volatile organic compounds (VOCs) are pervasive in the environment. Since the early 1980s, substantial work has examined the detection of these materials, as they can indicate environmental changes that can affect human health. VOCs and similar compounds present a very specific sensing problem in that they are not reactive and often nonpolar, so it is difficult to find materials that selectively bind or adsorb them. A number of techniques are applied to vapor sensing. High resolution molecular separation approaches such as gas chromatography and mass spectrometry are well-characterized and offer high sensitivity, but are difficult to implement in portable, real-time monitors, whereas approaches such as chemiresistors are promising, but still in development. Gravimetric approaches, in which the mass of an adsorbed vapor is directly measured, have several potential advantages over other techniques but have so far lagged behind other approaches in performance and market penetration. This review aims to offer a comprehensive background on gravimetric sensing including underlying resonators and sensitizers, as well as a picture of applications and commercialization in the field.


Assuntos
Compostos Orgânicos Voláteis , Gases , Humanos
17.
J Am Chem Soc ; 141(28): 10967-10971, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31260283

RESUMO

Atomically precise nanoscale clusters could assemble into crystalline ionic crystals akin to the atomic ionic solids through the strong electrostatic interactions between the constituent clusters. Here we show that, unlike atomic ionic solids, the electrostatic interactions between nanoscale clusters could be frustrated by using large clusters with long and flexible side-chains so that the ionic cluster pairs do not crystallize. As such, we report ionic superatomic materials that can be easily solution-processed into completely amorphous and homogeneous thin-films. These new amorphous superatomic materials show tunable compositions and new properties that are not achievable in crystals, including very high electrical conductivities of up to 300 S per meter, ultra low thermal conductivities of 0.05 W per meter per degree kelvin, and high optical transparency of up to 92%. We also demonstrate thin-film thermoelectrics with unoptimized ZT values of 0.02 based on the superatomic thin-films. Such properties are competitive to state-of-the-art materials and make superatomic materials promising as a new class of electronic and thermoelectric materials for devices.

18.
Trends Hear ; 22: 2331216518774450, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29732950

RESUMO

We report the fabrication and characterization of a prototype polyvinylidene fluoride polymer-based implantable microphone for detecting sound inside gerbil and human cochleae. With the current configuration and amplification, the signal-to-noise ratios were sufficiently high for normally occurring sound pressures and frequencies (ear canal pressures >50-60 dB SPL and 0.1-10 kHz), though 10 to 20 dB poorer than for some hearing aid microphones. These results demonstrate the feasibility of the prototype devices as implantable microphones for the development of totally implantable cochlear implants. For patients, this will improve sound reception by utilizing the outer ear and will improve the use of cochlear implants.


Assuntos
Cóclea/fisiologia , Implantes Cocleares , Polivinil , Desenho de Prótese , Razão Sinal-Ruído , Animais , Estudos de Viabilidade , Gerbillinae , Humanos
20.
Nat Chem ; 9(12): 1170-1174, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29168490

RESUMO

The controlled introduction of impurities into the crystal lattice of solid-state compounds is a cornerstone of materials science. Intercalation, the insertion of guest atoms, ions or molecules between the atomic layers of a host structure, can produce novel electronic, magnetic and optical properties in many materials. Here we describe an intercalation compound in which the host [Co6Te8(PnPr3)6][C60]3, formed from the binary assembly of atomically precise molecular clusters, is a superatomic analogue of traditional layered atomic compounds. We find that tetracyanoethylene (TCNE) can be inserted into the superstructure through a single-crystal-to-single-crystal transformation. Using electronic absorption spectroscopy, electrical transport measurements and electronic structure calculations, we demonstrate that the intercalation is driven by the exchange of charge between the host [Co6Te8(PnPr3)6][C60]3 and the intercalant TCNE. These results show that intercalation is a powerful approach to manipulate the material properties of superatomic crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...