Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 4(3): 031203, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27921067

RESUMO

The spatial organization of mouse frontal cortex is poorly understood. Here, we used voltage-sensitive dye to image electrical activity in the dorsal cortex of awake head-restrained mice. Whisker-deflection evoked the earliest sensory response in a localized region of primary somatosensory cortex and visual stimulation evoked the earliest responses in a localized region of primary visual cortex. Over the next milliseconds, the initial sensory response spread within the respective primary sensory cortex and into the surrounding higher order sensory cortices. In addition, secondary hotspots in the frontal cortex were evoked by whisker and visual stimulation, with the frontal hotspot for whisker deflection being more anterior and lateral compared to the frontal hotspot evoked by visual stimulation. Investigating axonal projections, we found that the somatosensory whisker cortex and the visual cortex directly innervated frontal cortex, with visual cortex axons innervating a region medial and posterior to the innervation from somatosensory cortex, consistent with the location of sensory responses in frontal cortex. In turn, the axonal outputs of these two frontal cortical areas innervate distinct regions of striatum, superior colliculus, and brainstem. Sensory input, therefore, appears to map onto modality-specific regions of frontal cortex, perhaps participating in distinct sensorimotor transformations, and directing distinct motor outputs.

2.
Neurophotonics ; 4(3): 031204, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27921068

RESUMO

Sensorimotor processing occurs in a highly distributed manner in the mammalian neocortex. The spatiotemporal dynamics of electrical activity in the dorsal mouse neocortex can be imaged using voltage-sensitive dyes (VSDs) with near-millisecond temporal resolution and [Formula: see text] spatial resolution. Here, we trained mice to lick a water reward spout after a 1-ms deflection of the C2 whisker, and we imaged cortical dynamics during task execution with VSD RH1691. Responses to whisker deflection were highly dynamic and spatially highly distributed, exhibiting high variability from trial to trial in amplitude and spatiotemporal dynamics. We differentiated trials based on licking and whisking behavior. Hit trials, in which the mouse licked after the whisker stimulus, were accompanied by overall greater depolarization compared to miss trials, with the strongest hit versus miss differences being found in frontal cortex. Prestimulus whisking decreased behavioral performance by increasing the fraction of miss trials, and these miss trials had attenuated cortical sensorimotor responses. Our data suggest that the spatiotemporal dynamics of depolarization in mouse sensorimotor cortex evoked by a single brief whisker deflection are subject to important behavioral modulation during the execution of a simple, learned, goal-directed sensorimotor transformation.

3.
Nat Neurosci ; 16(11): 1671-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24097038

RESUMO

Neocortical activity can evoke sensory percepts, but the cellular mechanisms remain poorly understood. We trained mice to detect single brief whisker stimuli and report perceived stimuli by licking to obtain a reward. Pharmacological inactivation and optogenetic stimulation demonstrated a causal role for the primary somatosensory barrel cortex. Whole-cell recordings from barrel cortex neurons revealed membrane potential correlates of sensory perception. Sensory responses depended strongly on prestimulus cortical state, but both slow-wave and desynchronized cortical states were compatible with task performance. Whisker deflection evoked an early (<50 ms) reliable sensory response that was encoded through cell-specific reversal potentials. A secondary late (50-400 ms) depolarization was enhanced on hit trials compared to misses. Optogenetic inactivation revealed a causal role for late excitation. Our data reveal dynamic processing in the sensory cortex during task performance, with an early sensory response reliably encoding the stimulus and later secondary activity contributing to driving the subjective percept.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Células Receptoras Sensoriais/fisiologia , Córtex Somatossensorial/citologia , Vibrissas/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Anestésicos Locais/farmacologia , Animais , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Nervo Facial/fisiologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Estimulação Física , Detecção de Sinal Psicológico/efeitos dos fármacos , Detecção de Sinal Psicológico/fisiologia , Tetrodotoxina/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Valina/análogos & derivados , Valina/farmacologia
4.
J Neurosci ; 32(15): 5097-105, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496555

RESUMO

The final motor output underlying behavior arises from an appropriate balance between excitation and inhibition within neural networks. Retrograde signaling by endocannabinoids adapts synaptic strengths and the global activity of neural networks. In the spinal cord, endocannabinoids are mobilized postsynaptically from network neurons and act retrogradely on presynaptic cannabinoid receptors to potentiate the locomotor frequency. However, it is still unclear whether mechanisms exist within the locomotor networks that determine the sign of the modulation by cannabinoid receptors to differentially regulate excitation and inhibition. In this study, using the lamprey spinal cord in vitro, we first report that 2-AG (2-arachidonyl glycerol) is mobilized by network neurons and underlies a form of modulation that is embedded within the locomotor networks. We then show that the polarity of the endocannabinoid modulation is gated by nitric oxide to enable simultaneously potentiation of excitation and depression of inhibition within the spinal locomotor networks. Our results suggest that endocannabinoid and nitric oxide systems interact to mediate inversion of the polarity of synaptic plasticity within the locomotor networks. Thus, endocannabinoid and nitric oxide shift in the excitation-inhibition balance to set the excitability of the spinal locomotor network.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides , Lampreias/fisiologia , Locomoção/efeitos dos fármacos , Rede Nervosa/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Óxido Nítrico/farmacologia , Medula Espinal/fisiologia , Animais , Ácidos Araquidônicos/farmacologia , Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Glicerídeos/farmacologia , Lactonas/farmacologia , Masculino , N-Metilaspartato/farmacologia , Rede Nervosa/citologia , Neurotransmissores/farmacologia , Óxido Nítrico/antagonistas & inibidores , Orlistate , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Receptor CB1 de Canabinoide/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
5.
J Neurosci ; 31(23): 8422-31, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21653846

RESUMO

Motor behavior is generated by specific neural circuits. Those producing locomotion are located in the spinal cord, and their activation depends on descending inputs from the brain or on sensory inputs. In this study, we have used an in vitro brainstem-spinal cord preparation from adult zebrafish to localize a region where stimulation of descending inputs can induce sustained locomotor activity. We show that a brief stimulation of descending inputs at the junction between the brainstem and spinal cord induces long-lasting swimming activity. The swimming frequencies induced are remarkably similar to those observed in freely moving adult fish, arguing that the induced locomotor episode is highly physiological. The motor pattern is mediated by activation of ionotropic glutamate and glycine receptors in the spinal cord and is not the result of synaptic interactions between neurons at the site of the stimulation in the brainstem. We also compared the activity of motoneurons during locomotor activity induced by electrical stimulation of descending inputs and by exogenously applied NMDA. Prolonged NMDA application changes the shape of the synaptic drive and action potentials in motoneurons. When escape activity occurs, the swimming activity in the intact zebrafish was interrupted and some of the motoneurons involved became inhibited in vitro. Thus, the descending inputs seem to act as a switch to turn on the activity of the spinal locomotor network in the caudal spinal cord. We propose that recurrent synaptic activity within the spinal locomotor circuits can transform a brief input into a well coordinated and long-lasting swimming pattern.


Assuntos
Tronco Encefálico/fisiologia , Locomoção/fisiologia , Atividade Motora/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Tronco Encefálico/efeitos dos fármacos , Vias Eferentes/efeitos dos fármacos , Vias Eferentes/fisiologia , Eletrofisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Locomoção/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , N-Metilaspartato/farmacologia , Medula Espinal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Peixe-Zebra
6.
Prog Brain Res ; 187: 99-110, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21111203

RESUMO

Discrete neural networks in the central nervous system generate the repertoire of motor behavior necessary for animal survival. The final motor output of these networks is the result of the anatomical connectivity between the individual neurons and also their biophysical properties as well as the dynamics of their synaptic transmission. To illustrate how this processing takes place to produce coordinated motor activity, we have summarized some of the results available from the lamprey spinal locomotor network. The detailed knowledge available in this model system on the organization of the network together with the properties of the constituent neurons and the modulatory systems allows us to determine how the impact of specific ion channels and receptors is translated to the global activity of the locomotor circuitry. Understanding the logic of the neuronal and synaptic processing within the locomotor network will provide information about not only their normal operation but also how they react to disruption such as injuries or trauma.


Assuntos
Canais Iônicos/metabolismo , Locomoção/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Medula Espinal/anatomia & histologia , Medula Espinal/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Lampreias/anatomia & histologia , Lampreias/fisiologia , Óxido Nítrico/metabolismo , Potássio/metabolismo , Transmissão Sináptica/fisiologia
7.
J Neurosci ; 29(42): 13283-91, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19846716

RESUMO

To understand the intrinsic operation of spinal networks generating locomotion, we need to not only characterize the constituent neurons and their connectivity, but also determine the role of intrinsic modulation in shaping the final motor output. We have focused on the effects of nitric oxide (NO) on the locomotor frequency and the underlying synaptic mechanisms in the lamprey spinal cord. To identify the source of NO, we used NADPH-diaphorase histochemistry and nNOS immunocytochemistry. Gray matter and sensory neurons were positively labeled using both methods. Preparations preincubated with NO synthase inhibitors displayed slower locomotor frequency that increased upon washout of the inhibitors, suggesting that NO is an endogenous neuromodulator in the spinal cord. Application of NO donors increased the locomotor frequency that was blocked by an NO scavenger and partially reduced by an inhibitor of sGC. To analyze the synaptic modulation underlying the NO-induced increase of the locomotor frequency we performed intracellular recordings from motoneurons and interneurons. The NO-induced increase in locomotor frequency was associated with a decrease in the midcycle inhibition and an increase in on-cycle excitation. To determine the site of action of NO, we examined the effect of NO donors on miniature PSCs. NO increased both the frequency and amplitude of mEPSCs while it only decreased the frequency of mIPSCs, suggesting the increased excitation is mediated by both presynaptic and postsynaptic mechanisms, while the decrease in inhibition involves only presynaptic mechanisms. Our results demonstrate a significant role of NO in adult vertebrate motor control which, via modulation of both excitatory and inhibitory transmission, increases the locomotor burst frequency.


Assuntos
Locomoção/fisiologia , Óxido Nítrico/metabolismo , Medula Espinal/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Benzoatos/farmacologia , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hidrazinas/farmacologia , Imidazóis/farmacologia , Técnicas In Vitro , Lampreias/fisiologia , Locomoção/efeitos dos fármacos , NADPH Desidrogenase/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Técnicas de Patch-Clamp/métodos , Bloqueadores dos Canais de Sódio/farmacologia , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Tetrodotoxina/farmacologia
8.
J Neurosci ; 29(33): 10387-95, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19692613

RESUMO

Serotonin (5-HT) plays an important role in shaping the activity of the spinal networks underlying locomotion in many vertebrate preparations. At larval stages in zebrafish, 5-HT does not change the frequency of spontaneous swimming; and it only decreases the quiescent period between consecutive swimming episodes. However, it is not known whether 5-HT exerts similar actions on the locomotor network at later developmental stages. For this, the effect of 5-HT on the fictive locomotor pattern of juvenile and adult zebrafish was analyzed. Bath-application of 5-HT (1-20 mum) reduced the frequency of the NMDA-induced locomotor rhythm. Blocking removal from the synaptic cleft with the reuptake inhibitor citalopram had similar effects, suggesting that endogenous serotonin is modulating the locomotor pattern. One target for this modulation was the mid-cycle inhibition during locomotion because the IPSPs recorded in spinal neurons during the hyperpolarized phase were increased both in amplitude and occurrence by 5-HT. Similar results were obtained for IPSCs recorded in spinal neurons clamped at the reversal potential of excitatory currents (0 mV). 5-HT also slows down the rising phase of the excitatory drive recorded in spinal cord neurons when glycinergic inhibition is blocked. These results suggest that the decrease in the locomotor burst frequency induced by 5-HT is mediated by a potentiation of mid-cycle inhibition combined with a delayed onset of the subsequent depolarization.


Assuntos
Atividade Motora/fisiologia , Serotonina/metabolismo , Sinapses/fisiologia , Peixe-Zebra/fisiologia , Animais , Sinapses/metabolismo
9.
J Physiol ; 587(Pt 12): 3001-8, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19403613

RESUMO

Metabotropic glutamate receptor subtype 1 (mGluR1) contributes importantly to the activity of the spinal locomotor network. For example, it potentiates NMDA current and inhibits leak conductance in lamprey spinal cord neurons. In this study we examined the signalling pathways underlying the mGluR1 modulation of NMDA receptors and leak channels, respectively. Our results show that mGluR1-induced potentiation of NMDA current required activation of phospholipase C (PLC) and was independent of the increase in the intracellular Ca2+ concentration because it was unaffected by the Ca2+ chelator BAPTA and by depletion of the internal Ca2+ stores with thapsigargin. We also show that the mGluR1-mediated inhibition of leak channels is mediated by activation of G-proteins. Finally, we show that blockade of protein kinase C (PKC) abolished the mGluR1-induced inhibition of leak current without affecting the potentiation of NMDA receptors. The contribution of mGluR1-mediated modulation of leak channels to the potentiation of the locomotor cycle frequency was assessed during fictive locomotion. Blockade of PKC significantly decreased the short-term potentiation of locomotor cycle frequency by mGluR1. These results show that the effects of mGluR1 activation on the two cellular targets, the NMDA receptor and leak channels, are mediated through separate signalling pathways.


Assuntos
Lampreias/fisiologia , Locomoção/fisiologia , Rede Nervosa/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Proteínas de Ligação ao GTP/fisiologia , Potenciação de Longa Duração/fisiologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Proteína Quinase C/fisiologia , Medula Espinal/fisiologia , Fosfolipases Tipo C/fisiologia
10.
Proc Natl Acad Sci U S A ; 105(52): 20941-6, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19095801

RESUMO

Na(+)-activated K(+) (K(Na)) channels are expressed in neurons and are activated by Na(+) influx through voltage-dependent channels or ionotropic receptors, yet their function remains unclear. Here we show that K(Na) channels are associated with AMPA receptors and that their activation depresses synaptic responses. Synaptic activation of K(Na) channels by Na(+) transients via AMPA receptors shapes the decay of AMPA-mediated current as well as the amplitude of the synaptic potential. Thus, the coupling between K(Na) channels and AMPA receptors by synaptically induced Na(+) transients represents an inherent negative feedback mechanism that scales down the magnitude of excitatory synaptic responses.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Lampreias , Ratos
11.
J Neurophysiol ; 99(1): 37-48, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17977928

RESUMO

The zebrafish is an attractive model system for studying the function of the spinal locomotor network by combining electrophysiological, imaging, and genetic approaches. Thus far, most studies have been focusing on embryonic and larval stages. In this study we have developed an in vitro preparation of the isolated spinal cord from adult zebrafish in which locomotor activity can be induced while the activity of single neurons can be monitored using whole cell recording techniques. Application of NMDA elicited rhythmic locomotor activity that was monitored by recording from muscles or ventral roots in semi-intact or isolated spinal cord preparations, respectively. This rhythmic activity displayed a left-right alternation and a rostrocaudal delay. Blockade of glycinergic synaptic transmission by strychnine switched the alternating activity into synchronous bursting in the left and right sides as well as along the rostrocaudal axis. Whole cell recordings from motoneurons showed that they receive phasic synaptic inputs that were correlated with the locomotor activity recorded in ventral roots. This newly developed in vitro preparation of the adult zebrafish spinal cord will allow examination of the organization of the spinal locomotor network in an adult system to complement studies in zebrafish larvae and new born rodents.


Assuntos
Locomoção/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Peixe-Zebra/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Lateralidade Funcional/fisiologia , Glicina/antagonistas & inibidores , Glicina/metabolismo , Locomoção/efeitos dos fármacos , Modelos Biológicos , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Rede Nervosa/citologia , Rede Nervosa/efeitos dos fármacos , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Periodicidade , Medula Espinal/citologia , Raízes Nervosas Espinhais/efeitos dos fármacos , Raízes Nervosas Espinhais/fisiologia , Estricnina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Peixe-Zebra/anatomia & histologia
12.
Brain Res Rev ; 57(1): 29-36, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17719648

RESUMO

To understand how the spinal central pattern generators produce locomotor movements, it is necessary to characterize the network's connectivity, the intrinsic properties of the constituent neurons and the modulatory mechanisms. Modulation operating within spinal locomotor networks is required for the generation of the final motor output. In this review, we have summarized how endocannabinoids released by locomotor network neurons contribute to setting the baseline locomotor frequency. They are synthesized on demand as a result of activation of mGluR1 and act as retrograde messengers to depress inhibitory synaptic transmission. We also discuss how endogenous activation of mGluR1 contributes to the normal operation of the spinal locomotor network and the underlying cellular and synaptic mechanisms.


Assuntos
Moduladores de Receptores de Canabinoides/fisiologia , Endocanabinoides , Locomoção/fisiologia , Rede Nervosa/fisiologia , Transdução de Sinais/fisiologia , Medula Espinal/fisiologia , Animais , Moduladores de Receptores de Canabinoides/metabolismo , Humanos , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/metabolismo , Receptores de AMPA/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Medula Espinal/metabolismo , Sinapses/fisiologia
13.
J Neurosci ; 27(46): 12664-74, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18003846

RESUMO

Retrograde signaling by endocannabinoids is known to induce short- and long-term synaptic plasticity, but the significance of this modulation for the activity of neural networks underlying motor behavior is largely unclear. Here, we used the isolated lamprey spinal cord to show that endocannabinoids released by activation of metabotropic glutamate receptor 1 (mGluR1) induce long-term synaptic plasticity during an ongoing locomotor rhythm and how this is translated onto the integrated activity of the spinal circuitry. A brief activation of mGluR1 induces a long-term increase in the locomotor frequency that is mediated by a concomitant long-term depression of midcycle reciprocal inhibition and long-term potentiation of ipsilateral synaptic excitation arising from locomotor circuit interneurons. Blockade of cannabinoid receptors with AM251 prevented the mGluR1-mediated long-term plasticity of both inhibitory and excitatory synaptic transmission, as well as that of the locomotor activity. Similarly, inhibition of nitric oxide signaling blocked the mGluR1-mediated long-term plasticity. These results show that the locomotor circuitry is endowed with a "memory" capacity mediated by a long-term shift in the balance between synaptic inhibition and excitation. This is triggered by activation of mGluR1 and requires subsequent endocannabinoid and nitric oxide signaling.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Atividade Motora/fisiologia , Vias Neurais/metabolismo , Plasticidade Neuronal/fisiologia , Óxido Nítrico/metabolismo , Medula Espinal/metabolismo , Animais , Antagonistas de Receptores de Canabinoides , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Lampreias , Atividade Motora/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/anatomia & histologia , Plasticidade Neuronal/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptores de Canabinoides/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/anatomia & histologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Tempo
14.
Neuron ; 45(1): 95-104, 2005 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-15629705

RESUMO

Endocannabinoids act as retrograde signals to modulate synaptic transmission. Little is known, however, about their significance in integrated network activity underlying motor behavior. We have examined the physiological effects of endocannabinoids in a neuronal network underlying locomotor behavior using the isolated lamprey spinal cord. Our results show that endocannabinoids are released during locomotor activity and participate in setting the baseline burst rate. They are released in response to mGluR1 activation and act as retrograde messengers. This conditional release of endocannabinoids can transform motoneurons and crossing interneurons into modulatory neurons by enabling them to regulate their inhibitory synaptic inputs and thus contribute to the modulation of the locomotor burst frequency. These results provide evidence that endocannabinoid retrograde signaling occurs within the locomotor network and contributes to motor pattern generation and regulation in the spinal cord.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Locomoção/fisiologia , Rede Nervosa/metabolismo , Neurotransmissores/metabolismo , Medula Espinal/metabolismo , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Agonistas de Receptores de Canabinoides , Antagonistas de Receptores de Canabinoides , Canabinoides/farmacologia , Lampreias , Locomoção/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...