Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 201: 115073, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37657644

RESUMO

The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety. However, such approach has been mainly achieved via lipid nanoparticles (LNPs) or chemical conjugation with N-Acetylgalactosamine (GalNAc), thus current RNAi therapy has been limited to liver diseases, most likely to encounter liver-targeting limitations. Hence, there is a huge unmet medical need for intense evolution of RNAi therapeutics delivery systems to target extrahepatic tissues and ultimately extend their indications for treating various intractable diseases. In this review, challenges of delivering RNAi therapeutics to tumors and major organs are discussed, as well as their transition to clinical trials. This review also highlights innovative and promising preclinical RNAi-based delivery platforms for the treatment of extrahepatic diseases.


Assuntos
COVID-19 , Nanopartículas , Humanos , Terapêutica com RNAi , RNA Interferente Pequeno , Vacinas contra COVID-19 , COVID-19/terapia , Interferência de RNA , Nanopartículas/química
2.
Adv Drug Deliv Rev ; 183: 114177, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245568

RESUMO

As immunogenic cell death (ICD) inducers initiating antitumor immune responses, certain chemotherapeutic drugs have shown considerable potential to reverse the immunosuppressive tumor microenvironment (ITM) into immune-responsive tumors. The application of these drugs in nanomedicine provides a more enhanced therapeutic index by improving unfavorable pharmacokinetic (PK) profiles and inefficient tumor targeting. However, the clinical translation of conventional nanoparticles is restricted by fundamental problems, such as risks of immunogenicity and potential toxicity by carrier materials, premature drug leakage in off-target sites during circulation, low drug loading contents, and complex structure and synthetic processes that hinder quality control (QC) and scale-up industrial production. To address these limitations, tumor-activated carrier-free prodrug nanoparticles (PDNPs), constructed only by the self-assembly of prodrugs without any additional carrier materials, have been widely investigated with distinct advantages for safe and more effective drug delivery. In addition, combination immunotherapy based on PDNPs with other diverse modalities has efficiently reversed the ITM to immune-responsive tumors, potentiating the response to immune checkpoint blockade (ICB) therapy. In this review, the trends and advances in PDNPs are outlined, and each self-assembly mechanism is discussed. In addition, various combination immunotherapies based on PDNPs are reviewed. Finally, a physical tumor microenvironment remodeling strategy to maximize the potential of PDNPs, and key considerations for clinical translation are highlighted.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Excipientes , Humanos , Imunoterapia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Pró-Fármacos/química , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...