Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 35: 116072, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636429

RESUMO

Disruptor of telomeric silencing-1 like (DOT1L) is a histone H3 methyltransferase which specifically catalyzes the methylation of histone H3 lysine-79 residue. Recent findings demonstrate that DOT1L is abnormally overexpressed and the upregulated DOT1L evokes the proliferation and metastasis in human breast cancer cells. Therefore, the DOT1L inhibitor is considered a promising strategy to treat breast cancers. Non-nucleoside DOT1L inhibitors, selenopsammaplin A and its analogues, were firstly reported in the present study. Selenopsammaplin A was newly designed and synthesized with 25% overall yield in 8 steps from 3-bromo-4-hydroxybenzaldahyde, and thirteen analogues of selenopsammaplin A were prepared for structure-activity relationship studies of their cytotoxicity against cancer cells and inhibitory activity toward DOT1L for antitumor potential. All synthetic selenopsammaplin A analogues exhibited the higher cytotoxicity compared to psammaplin A with up to 6 - 60 times depending on cancer cells, and most analogues showed significant inhibitory activities against DOT1L. Among the prepared analogues, the phenyl analogue (10) possessed the most potent activity with both cytotoxicity and inhibition of DOT1L. Compound 10 also exhibited the antitumor and antimetastatic activity in an orthotopic mouse metastasis model implanted with MDA-MB-231 human breast cancer cells. These biological findings suggest that analogue 10 is a promising candidate for development as a cancer chemotherapeutic agent in breast cancers.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade
2.
J Ethnopharmacol ; 179: 66-75, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26712566

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Harpagide, an iridoid glucoside, is a constituent of the root of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, Devil's claw which has been used in patients with osteoarthritis (OA). In the present study, we investigated the anti-osteoporotic potential of harpagide and its underlying mechanism of action in in vitro cell culture and in vivo bone loss animal models. MATERIAL AND METHODS: Harpagide was obtained from the alkalic hydrolysis of harpagoside, a major constituent of H. procumbens var. sublobatum Analysis of biomarkers for bone formation in osteoblastic MC3T3-E1 cells and bone resorption in osteoclast cells derived from mouse bone marrow cells was performed to evaluate the mechanism of action. The protective activity of harpagide against bone loss was also evaluated in ovariectomized (OVX) mouse model. RESULTS: Harpagide improved bone properties by stimulating the process of differentiation and maturation of osteoblast cells and suppressing the process of RANKL-induced differentiation of osteoclast cells. In OVX-induced bone loss mouse model, oral administration of harpagide significantly improved recovery of bone mineral density, trabecular bone volume, and trabecular number in the femur. Harpagide also prevented increase of trabecular separation and structure model index induced by OVX. Harpagide effectively inhibited the serum levels of biochemical markers of bone loss, including alkaline phosphatase, osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase. CONCLUSION: Taken together, the present study demonstrates that harpagide has a potential for prevention of bone loss in OVX mice by regulating the stimulation of osteoblast differentiation and the suppression of osteoclast formation. Therefore, these findings suggest that harpagide might serve as a bioactive compound derived from H. procumbens var. sublobatum for improvement of age-dependent bone destruction disease.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Desenvolvimento Ósseo/efeitos dos fármacos , Glicosídeos Iridoides/uso terapêutico , Osteoblastos/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Piranos/uso terapêutico , Células 3T3 , Animais , Células da Medula Óssea/efeitos dos fármacos , Reabsorção Óssea/prevenção & controle , Células Cultivadas , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Osteocalcina/metabolismo , Osteoclastos/efeitos dos fármacos , Ovariectomia , Ligante RANK/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...