Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(1): 011401, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478426

RESUMO

We perform a general-relativistic neutrino-radiation magnetohydrodynamic simulation of a one second-long binary neutron star merger on the Japanese supercomputer Fugaku using about 85 million CPU hours with 20 736 CPUs. We consider an asymmetric binary neutron star merger with masses of 1.2M_{⊙} and 1.5M_{⊙} and a "soft" equation of state SFHo. It results in a short-lived remnant with the lifetime of ≈0.017 s, and subsequent massive torus formation with the mass of ≈0.05M_{⊙} after the remnant collapses to a black hole. For the first time, we find that after the dynamical mass ejection, which drives the fast tail and mildly relativistic components, the postmerger mass ejection from the massive torus takes place due to the magnetorotational instability-driven turbulent viscosity in a single simulation and the two ejecta components are seen in the distributions of the electron fraction and velocity with distinct features.

2.
Phys Rev Lett ; 130(9): 091404, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930907

RESUMO

The cores of neutron stars (NSs) near the maximum mass can realize a transitional change to quark matter (QM). Gravitational waves from binary NS mergers are expected to convey information about the equation of state (EOS) sensitive to the QM transition. Here, we present the first results of gravitational wave simulation with the realistic EOS that is consistent with ab initio approaches of χEFT and pQCD and is assumed to go through smooth crossover. We compare them to results obtained with another EOS with a first-order hadron-quark phase transition. Our results suggest that early collapse to a black hole in the post-merger stage after NS merger robustly signifies softening of the EOS associated with the QM onset in the crossover scenario. The nature of the hadron-quark phase transition can be further constrained by the condition that electromagnetic counterparts should be energized by the material left outside the remnant black hole.

3.
Phys Rev Lett ; 118(15): 151101, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28452509

RESUMO

We discuss the gravitational wave (GW) emission and the orbital evolution of a hierarchical triple system composed of an inner binary black hole (BBH) and an outer tertiary. Depending on the kick velocity at the merger, the merged BBH could tidally disrupt the tertiary. Even though the fraction of BBH mergers accompanied by such disruptions is expected to be much smaller than unity, the existence of a tertiary and its basic parameters (e.g., semimajor axis, projected mass) can be examined for more than 10^{3} BBHs with the follow-on missions to the space GW detector LISA. This allows us to efficiently prescreen the targets for the follow-up searches for the tidal disruption events (TDEs). The TDE probability would be significantly higher for triple systems with aligned orbital- and spin-angular momenta, compared with random configurations.

4.
Phys Rev Lett ; 116(18): 181101, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27203312

RESUMO

Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

5.
Phys Rev Lett ; 107(21): 211101, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181867

RESUMO

Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating both nucleonic and hyperonic finite-temperature equations of state (EOS) and neutrino cooling. It is found that even for the hyperonic EOS, a hypermassive neutron star is first formed after the merger for the typical total mass ≈2.7M(⊙), and subsequently collapses to a black hole (BH). It is shown that hyperons play a substantial role in the postmerger dynamics, torus formation around the BH, and emission of gravitational waves (GWs). In particular, the existence of hyperons is imprinted in GWs. Therefore, GW observations will provide a potential opportunity to explore the composition of neutron star matter.

6.
Phys Rev Lett ; 107(5): 051102, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21867057

RESUMO

Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating a finite-temperature (Shen's) equation of state (EOS) and neutrino cooling for the first time. It is found that for this stiff EOS, a hypermassive neutron star (HMNS) with a long lifetime (≫10 ms) is the outcome for the total mass ≲3.0M(⊙). It is shown that the typical total neutrino luminosity of the HMNS is ∼3-8×10(53) erg/s and the effective amplitude of gravitational waves from the HMNS is 4-6×10(-22) at f=2.1-2.5 kHz for a source distance of 100 Mpc. We also present the neutrino luminosity curve when a black hole is formed for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...