Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; : 142942, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059636

RESUMO

The study investigates the efficiency of air-gap membrane distillation (AGMD) in water recovery and antibiotics removal from wastewater, focusing on high-concentration scenarios. Experimental findings reveal enhanced membrane performance with increasing the feed temperature, resulting in vapor permeate fluxes of up to 5 kg/m2.h at higher temperatures. Despite experiencing flux reduction caused by fouling from humic acid (HA) in the feed antibiotics solution, the antibiotics consistently maintain near-complete rejection rates (>99%) over 48 hours. The foulant on the membrane surface was illustrated by SEM imaging. To know the temperature polarization and the fouling resistance, mathematical modeling was used, and it validates experimental results, elucidating temperature polarization effects and mass transfer coefficients. An increase in feed flow rates reduced thermal boundary layers, enhancing heat flux. Higher temperatures reduced HA fouling resistance. Therefore, AGMD proves effective in water recovery and antibiotics removal, with mathematical models aiding fouling understanding for future research and detailed computational fluid dynamics (CFD) models.

2.
ACS Omega ; 7(42): 37846-37856, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312362

RESUMO

The main waste stream from the textile industry is its wastewater with high color, organic matters, and other contaminants. This study aims to investigate the effect of humic acid in mixed wastewater of humic acid and reactive dye on the treatment performance and permeate flux of a direct contact membrane distillation (DCMD) system. In this research, feed temperature and humic acid concentration were the main input parameters for the analysis of DCMD system operation. The fouling resistances significantly increased with higher humic acid concentrations in the mixed wastewater. As compared with the DI water test, 23% of flux decline occurred when the humic concentration in the wastewater was increased up to 20 mg/L. After the DCMD treatment, the 25 ADMI residual color was detected in the permeate when the mixed wastewater contained 20 mg/L humic acid. The mathematical model, based on the Antione equation, was proposed to predict the membrane flux decline of the DCMD system. The reduced pore size of the cake layer by a dimensionless constant ß from the Kelvin equation was also considered for the fouling calculation to describe the transport mechanism.

3.
ACS Omega ; 7(31): 27722-27733, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967053

RESUMO

This research investigated the feasibility of enhancing ammonia recovery from wastewater using a negatively charged poly(tetrafluoroethylene) (PTFE) membrane in a direct contact membrane distillation (DCMD) system. The influences of phosphate solution types (as the permeate solutions) and feed pH on ammonia recovery were analyzed. Three types of permeate solutions-DI water and two types of phosphate solutions (H3PO4 and KH2PO4)-were investigated for recovery of ammonia gas on the permeate side. From the obtained results, the H3PO4 solution was found to be the most suitable permeate solution to recover ammonia gas in the DCMD operation with the highest overall ammonia mass transfer coefficient of 7.4 × 10-5 m/s, compared to values of 1.2 × 10-5 and 2.4 × 10-5 m/s for DI water and KH2PO4 solution, respectively. Moreover, an increase in the H3PO4 concentration from 0.3 to 0.5 M in the permeate solution also could significantly enhance ammonia recovery. With an increase in the feed pH from 10.0 to 11.8, the ammonia recovery could be enhanced to 92.98% at a pH of 11.8. Liquid ammonium phosphate fertilizer could be produced by the DCMD system with the use of 0.5 M H3PO4 solution. Therefore, the DCMD process using a negatively charged PTFE membrane with an appropriate permeate solution is one of the challenging processes for ammonia recovery from wastewater to promote the circular economy concept.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...