Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37512319

RESUMO

This article presents a comparative study of WC and CrC coatings deposited by the plasma-enhanced chemical vapor method using the hexacarbonyls of W and Cr as precursors. The measured thicknesses of the WC and CrC coatings are equal to ca. 1.5 µm. The WC coating consists of microcolumns with a conical end, with gaps between the microcolumns up to approximately 100 nm, and their structure is formed by nanoparticles in the shape of globules with a diameter of up to 10 nm. In the case of the CrC coating, a cauliflower structure with gaps ranging from 20 to 100 nm was achieved. The diameter of cauliflower grains is from 50 nm to 300 nm. The C content in the WC and CrC coating is 66.5 at.% and 75.5 at.%. The W content is 1.4 at.% and the Cr content in the CrC coating is 1.2 at.%. The hardness and Young's modulus of the WC coating are equal to 9.2 ± 1.2 GPa 440.2 ± 14.2 GPa, respectively. The coefficients of friction and wear volume of the WC coating are equal to 0.7 and -1.6 × 106/+3.3 × 106 µm3, respectively. The hardness and Young's modulus of the CrC coating are 7.5 ± 1.2 GPa and 280 ± 18.5 GPa, respectively. The coefficients of friction and wear volume of the CrC coating are 0.72 and -18.84 × 106/+0.35 × 106 µm3, respectively.

2.
Biomater Adv ; 136: 212791, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929324

RESUMO

Tailoring surface properties by layer-by-layer (LBL) deposition directed on the construction of complex multilayer coatings with nanoscale precision enables the development of novel structures and devices with desired functional properties (i.e., osseointegration, bactericidal activity, biocorrosion protection). Herein, electrostatic self-assembly was applied to fabricate biopolymer-based coatings involving chitosan (CSM) and alginate (AL) enriched with caffeic acid (CA) on Ti-6Al-7Nb alloyed surfaces. The method of CA grafting onto the chitosan backbone (CA-g-CSM) as well as all used reagents for implant functionalization were chosen as green and sustainable approach. The final procedure of surface modification of the Ti-6Al-7Nb alloy consists of three steps: (i) chemical treatment in Piranha solution, (ii) plasma chemical-activation of the Ti alloy surface in a RF CVD (Radio Frequency Chemical Vapour Deposition) reactor using Ar, O2 and NH3 gaseous precursors, and (iii) a multi-step deposition of bio-functional coatings via dip-coating method. Corrosion tests have revealed that the resulting chitosan-based coatings, also these involving CA, block the specimen surface and hinder corrosion of titanium alloy. Furthermore, the antioxidant layers are characterized by beneficial level of roughness (Ra up ca. 350 nm) and moderate hydrophilicity (59°) with the dispersion part of conducive surface energy ca. 30 mJ/m2. Noteworthy, all coatings are biocompatible as the intact morphology of cultured eukaryotic cells ensured proper growth and proliferation, while exhibit bacteriostatic character, particularly in contact with Gram-(-) bacteria (E. coli). The study indicates that the applied simple sustainable strategy has contributed significantly to obtaining homogeneous, stable, and biocompatible while antibacterial biopolymer-based coatings.


Assuntos
Quitosana , Titânio , Ligas , Ácidos Cafeicos , Quitosana/química , Escherichia coli , Imersão , Eletricidade Estática , Titânio/química
3.
Materials (Basel) ; 15(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744140

RESUMO

The results of plasmochemical modification on Crofer 22APU ferritic stainless steel with a SiCxNy:H layer, as well as the impact of these processes on the increase in usability of the steel as intermediate-temperature solid oxide fuel cell (IT-SOFC), interconnects, are presented in this work. The layer was obtained using Radio-Frequency Plasma-Activated Chemical Vapor Deposition (RF PA CVD, 13.56 MHz) with or without the N+ ion modification process of the steel surface. To determine the impact of the surface modification on the steel's resistance to high-temperature corrosion and on its mechanical properties, the chemical composition, atomic structure, and microstructure were investigated by means of IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Microhardness, Young's modulus, wear rate, as well as electrical resistance, were also determined. Micromechanical experiments showed that the plasmochemical modification has a positive influence on the surface hardness and Young's modulus of the investigated samples. High-temperature oxidation studies performed for the samples indicate that N+ ion modification prior to the deposition of the SiCxNy:H layer improves the corrosion resistance of Crofer 22APU steel modified via CVD. The area-specific resistance of the studied samples was 0.01 Ω·cm2, which is lower than that of bare steel after 500 h of oxidation at 1073 K. It was demonstrated that the deposition of the SiCxNy:H layer preceded by N+ ion modification yields the best properties.

4.
Materials (Basel) ; 14(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443181

RESUMO

In this paper, we present the results of an experimental study on WC/C coatings, deposited by using plasma-enhanced chemical vapor deposition in an N2-SiH4 atmosphere, annealed at temperatures of 200, 500 and 800 °C, in which the hexacarbonyl of W was used as a precursor. During the experiments, the topography, chemical composition, morphology, as well as selected mechanical properties, such as hardness, Young's modulus, and coefficient of friction of the WC/C coatings were analyzed. Annealing without the protective atmosphere in the mentioned temperatures caused a decrease in hardness (up to 15 ± 2.7 GPa). In addition, the coefficient of friction value increased only to 0.37 ± 0.03.

5.
Materials (Basel) ; 14(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540630

RESUMO

Doping of graphene and a controlled induction of disturbances in the graphene lattice allows the production of numerous active sites for lithium ions on the surface and edges of graphene nanolayers and improvement of the functionality of the material in lithium-ion batteries (LIBs). This work presents the process of introducing boron and fluorine atoms into the structure of the reduced graphene during hydrothermal reaction with boron fluoride tetrahydrofuran (BF3·THF). The described process is a simple, one-step synthesis with little to no side products. The synthesized materials showed an irregular, porous structure, with an average pore size of 3.44-3.61 nm (total pore volume (BJH)) and a multi-layer structure and a developed specific surface area at the level of 586-660 m2/g (analysis of specific surface Area (BET)). On the external surfaces, the occurrence of irregular particles with a size of 0.5 to 10 µm was observed, most probably the effect of doping the graphene structure and the formation of sp3 hybridization defects. The obtained materials show the ability to store electric charge due to the development of the specific surface area. Based on cyclic voltammetry, the tested material showed a capacity of 450-550 mAh/g (charged up to 2.5 V).

6.
Mater Sci Eng C Mater Biol Appl ; 121: 111848, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579482

RESUMO

The work presents a detailed study on the diamond-like structures doped with Si atoms and biopolymers-based coatings (chitosan, alginate) enriched with Ag nanoparticles (Ag NPs) deposited on the Ti-6Al-7Nb substrate. Multilayers were obtained by Plasma Enhanced Radio Frequency Chemical Vapour Deposition (PE RF CVD) technique and subsequent deposition of biopolymers by immersion method. The impact of Si atoms and Ag NPs on chemical structure, microstructure, topography, cytotoxicity as well as the hardness and Young modulus of the resulting layers was precisely investigated. The most advantageous conditions of plasma functionalization in RF reactor were the mixture of O2-Ar-NH3 in volume ratio of 10/1/9 in the first stage of functionalization (pre-activation). In the case of Si-DLC coatings (up to ca. 19 at.%) the lower silane flow (4 cm3/min) resulted in significant decrease of surface roughness (up to ca. Ra = 0.71 nm) of modified surfaces and increase of hardness reaching ca. 900 nm depth into surface (up to ca. 16 GPa). The most attractive among biopolymer-based coating on Ti-6Al-7Nb in terms of biological activity was chitosan with Ag NPs (diameter of ca. 25 nm) with additional alginate layer. AFM analysis revealed a uniform distribution of Ag NPs in the chitosan matrix. This contributed to advantageous physicochemical and biological properties assuring proper cell adhesion and proliferation. Noteworthy, the resulting surface functionalization of Ti-6Al-7Nb alloy did not cause significant cytotoxicity in vitro, giving a strong hope for perspective applications in implantology.


Assuntos
Quitosana , Nanopartículas Metálicas , Teste de Materiais , Oxigênio , Prata , Propriedades de Superfície , Titânio
7.
Materials (Basel) ; 13(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823605

RESUMO

The present work studies the tungsten carbide (WC/C) coatings deposited by using Plasma Enhanced Chemical Vapor Deposition (PECVD), with and without gases of Ar and N2. Volatile hexacarbonyl of W was used as a precursor. Their mechanical and tribological properties were evaluated. The following values were obtained by using deposition process with N2 of HIT = 19.7 ± 4.1 GPa, EIT = 221 ± 2.1 GPa, and coefficient of friction (COF) = 0.35 ± 0.09. Secondly, deposition without the aforementioned gas obtained values of HIT = 20.9 ± 2 GPa, EIT = 292 ± 20 GPa, and COF = 0.69 ± 0.05. WC/C coatings were annealed at temperatures of 200, 500, and 800 °C, respectively. Evaluated factors include the introduced properties, the observed morphology, and the structural composition of WC/C coatings. The process of degradation was carried out by using various velocities, depending on used gases and annealing temperatures.

8.
Materials (Basel) ; 13(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028708

RESUMO

This article presents the results of the cross-linking of oxidized flake graphene (GO) using hydrazine at room temperature. Conducting the process at temperatures up to 30 °C allowed to eliminate the phenomenon of thermal GO reduction to its non-oxidized form. In addition, based on the Infrared and Raman spectroscopy as well as X-ray photoelectron spectroscopy (XPS) analysis, the cross-linking ability of GO was observed depending on its size and degree of oxidation. These parameters were associated with selected physicochemical and electrical properties of obtained 3D structures. Three GO flakes sizes were tested in three different oxidation degrees. It was shown that, regardless of the size of GO, it is crucial to achieve a specific oxidation degree threshold which for the conducted tests was a >20% share of oxygen atoms in the whole structure. This value determines the ability to cross-link with hydrazine thanks to which it is possible to synthesize the spatial structure in which the π-π interactions among individual flakes are significantly reduced. This directly translates into the fact that the 3D structure shows an electrical resistance value in the range of 4-103 Ω, depending on the size and oxidation degree of the used material. The explanation of this phenomenon related to the electrical conductivity of 3D structures was confirmed based on the molecular modeling of the chemical structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...