Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(1): e9704, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36687801

RESUMO

Fecundity, the number of young produced by a breeding pair during a breeding season, is a primary component in evolutionary and ecological theory and applications. Fecundity can be influenced by many environmental factors and requires long-term study due to the range of variation in ecosystem dynamics. Fecundity data often include a large proportion of zeros when many pairs fail to produce any young during a breeding season due to nest failure or when all young die independently after fledging. We conducted color banding and monthly censuses of Florida scrub-jays (Aphelocoma coerulescens) across 31 years, 15 populations, and 761 territories along central Florida's Atlantic coast. We quantified how fecundity (juveniles/pair-year) was influenced by habitat quality, presence/absence of nonbreeders, population density, breeder experience, and rainfall, with a zero-inflated Bayesian hierarchical model including both a Bernoulli (e.g., brood success) and a Poisson (counts of young) submodel, and random effects for year, population, and territory. The results identified the importance of increasing "strong" quality habitat, which was a mid-successional state related to fire frequency and extent, because strong territories, and the proportion of strong territories in the overall population, influenced fecundity of breeding pairs. Populations subject to supplementary feeding also had greater fecundity. Territory size, population density, breeder experience, and rainfall surprisingly had no or small effects. Different mechanisms appeared to cause annual variation in fecundity, as estimates of random effects were not correlated between the success and count submodels. The increased fecundity for pairs with nonbreeders, compared to pairs without, identified empirical research needed to understand how the proportion of low-quality habitats influences population recovery and sustainability, because dispersal into low-quality habitats can drain nonbreeders from strong territories and decrease overall fecundity. We also describe how long-term study resulted in reversals in our understanding because of complications involving habitat quality, sociobiology, and population density.

2.
Mol Cancer Res ; 17(12): 2492-2507, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31537618

RESUMO

The major obstacle in successfully treating triple-negative breast cancer (TNBC) is resistance to cytotoxic chemotherapy, the mainstay of treatment in this disease. Previous preclinical models of chemoresistance in TNBC have suffered from a lack of clinical relevance. Using a single high dose chemotherapy treatment, we developed a novel MDA-MB-436 cell-based model of chemoresistance characterized by a unique and complex morphologic phenotype, which consists of polyploid giant cancer cells giving rise to neuron-like mononuclear daughter cells filled with smaller but functional mitochondria and numerous lipid droplets. This resistant phenotype is associated with metabolic reprogramming with a shift to a greater dependence on fatty acids and oxidative phosphorylation. We validated both the molecular and histologic features of this model in a clinical cohort of primary chemoresistant TNBCs and identified several metabolic vulnerabilities including a dependence on PLIN4, a perilipin coating the observed lipid droplets, expressed both in the TNBC-resistant cells and clinical chemoresistant tumors treated with neoadjuvant doxorubicin-based chemotherapy. These findings thus reveal a novel mechanism of chemotherapy resistance that has therapeutic implications in the treatment of drug-resistant cancer. IMPLICATIONS: These findings underlie the importance of a novel morphologic-metabolic phenotype associated with chemotherapy resistance in TNBC, and bring to light novel therapeutic targets resulting from vulnerabilities in this phenotype, including the expression of PLIN4 essential for stabilizing lipid droplets in resistant cells.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Perilipina-4/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/genética , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Gotículas Lipídicas/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
3.
Breast Cancer Res ; 19(1): 104, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28877752

RESUMO

BACKGROUND: The primary cilium is a microtubule-based and nonmotile organelle functioning as a cellular antenna that is involved in the regulation of cell proliferation, differentiation, and migration. In breast cancer cells, the primary cilium is a structure that decreases in incidence with increasing degrees of transformation and may be biologically more important in estrogen receptor (ERα)-negative breast cancer cells. Split ends (SPEN) is an ERα corepressor that we have identified as a tumor suppressor protein in ERα-positive breast cancer cells whose hormone-independent roles in breast cancer have never been explored. METHODS: We determined the hormone-independent transcriptional program regulated by the ERα cofactor SPEN in breast cancer using DNA microarrays. The biological functions regulated by SPEN independently of hormones were studied in vitro in ERα-positive and ERα-negative breast cancer cells. Finally, we examined the clinical relevance of SPEN expression in cohorts of breast cancer samples with outcome data. RESULTS: We found that SPEN is coexpressed with a number of genes involved in ciliary biology, including the ciliogenic transcription factor RFX3, in a hormone-independent manner. SPEN reexpression in T47D cells containing a nonsense mutation in SPEN restored the primary cilium, whereas its knockdown in MCF10A and Hs578T cells considerably decreased primary cilia levels. We also report that SPEN regulates migration in breast cells, but only in those harboring primary cilia, and that KIF3A silencing, a critical factor in primary cilia, partially reverses SPEN's effects, suggesting that SPEN may coordinate cellular movement through primary cilia-dependent mechanisms. Finally, we found that high SPEN RNA levels were predictive of early metastasis in two independent cohorts of 77 (HR 2.25, P = 0.03) and 170 (HR = 2.23, P = 0.004) patients with ERα-negative breast cancer. CONCLUSIONS: Together, our data demonstrate a role for SPEN in the regulation of primary cilia formation and cell migration in breast cancer cells, which may collectively explain why its expression is associated with time to metastasis in cohorts of patients with ERα-negative breast cancers.


Assuntos
Neoplasias da Mama/genética , Movimento Celular/genética , Cílios/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Metástase Neoplásica , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição de Fator Regulador X/metabolismo
4.
Mol Endocrinol ; 30(9): 965-76, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27581354

RESUMO

Approximately 70% of breast cancers express the estrogen receptor (ER)α and are treated with the ERα antagonist, tamoxifen. However, resistance to tamoxifen frequently develops in advanced breast cancer, in part due to a down-regulation of ERα corepressors. Nuclear receptor corepressors function by attenuating hormone responses and have been shown to potentiate tamoxifen action in various biological systems. Recent genomic data on breast cancers has revealed that genetic and/or genomic events target ERα corepressors in the majority of breast tumors, suggesting that the loss of nuclear receptor corepressor activity may represent an important mechanism that contributes to intrinsic and acquired tamoxifen resistance. Here, the biological functions of ERα corepressors are critically reviewed to elucidate their role in modifying endocrine sensitivity in breast cancer. We highlight a mechanism of gene repression common to corepressors previously shown to enhance the antitumorigenic effects of tamoxifen, which involves the recruitment of histone deacetylases (HDACs) to DNA. As an indicator of epigenetic disequilibrium, the loss of ERα corepressors may predispose cancer cells to the cytotoxic effects of HDAC inhibitors, a class of drug that has been shown to effectively reverse tamoxifen resistance in numerous studies. HDAC inhibition thus appears as a promising therapeutic approach that deserves to be further explored as an avenue to restore drug sensitivity in corepressor-deficient and tamoxifen-resistant breast cancers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Histona Desacetilases/metabolismo , Tamoxifeno/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Fator II de Transcrição COUP/metabolismo , Feminino , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas Nucleares/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Proteína 1 de Interação com Receptor Nuclear
5.
Cancer Res ; 75(20): 4351-63, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26297734

RESUMO

The treatment of breast cancer has benefitted tremendously from the generation of estrogen receptor-α (ERα)-targeted therapies, but disease relapse continues to pose a challenge due to intrinsic or acquired drug resistance. In an effort to delineate potential predictive biomarkers of therapy responsiveness, multiple groups have identified several uncharacterized cofactors and interacting partners of ERα, including Split Ends (SPEN), a transcriptional corepressor. Here, we demonstrate a role for SPEN in ERα-expressing breast cancers. SPEN nonsense mutations were detectable in the ERα-expressing breast cancer cell line T47D and corresponded to undetectable protein levels. Further analysis of 101 primary breast tumors revealed that 23% displayed loss of heterozygosity at the SPEN locus and that 3% to 4% harbored somatically acquired mutations. A combination of in vitro and in vivo functional assays with microarray-based pathway analyses showed that SPEN functions as a tumor suppressor to regulate cell proliferation, tumor growth, and survival. We also found that SPEN binds ERα in a ligand-independent manner and negatively regulates the transcription of ERα targets. Moreover, we demonstrate that SPEN overexpression sensitizes hormone receptor-positive breast cancer cells to the apoptotic effects of tamoxifen, but has no effect on responsiveness to fulvestrant. Consistent with these findings, two independent datasets revealed that high SPEN protein and RNA expression in ERα-positive breast tumors predicted favorable outcome in patients treated with tamoxifen alone. Together, our data suggest that SPEN is a novel tumor-suppressor gene that may be clinically useful as a predictive biomarker of tamoxifen response in ERα-positive breast cancers.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Morte Celular , Linhagem Celular Tumoral , Estudos de Coortes , Hibridização Genômica Comparativa , Proteínas de Ligação a DNA , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Mutação , Proteínas Nucleares/genética , Prognóstico , Proteínas de Ligação a RNA , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...