Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
PLoS Comput Biol ; 20(6): e1012209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870205

RESUMO

Balance impairments are common in cerebral palsy. When balance is perturbed by backward support surface translations, children with cerebral palsy have increased co-activation of the plantar flexors and tibialis anterior muscle as compared to typically developing children. However, it is unclear whether increased muscle co-activation is a compensation strategy to improve balance control or is a consequence of reduced reciprocal inhibition. During translational perturbations, increased joint stiffness due to co-activation might aid balance control by resisting movement of the body with respect to the feet. In contrast, during rotational perturbations, increased joint stiffness will hinder balance control as it couples body to platform rotation. Therefore, we expect increased muscle co-activation in response to rotational perturbations if co-activation is caused by reduced reciprocal inhibition but not if it is merely a compensation strategy. We perturbed standing balance by combined backward translational and toe-up rotational perturbations in 20 children with cerebral palsy and 20 typically developing children. Perturbations induced forward followed by backward movement of the center of mass. We evaluated reactive muscle activity and the relation between center of mass movement and reactive muscle activity using a linear feedback model based on center of mass kinematics. In typically developing children, perturbations induced plantar flexor balance correcting muscle activity followed by tibialis anterior balance correcting muscle activity, which was driven by center of mass movement. In children with cerebral palsy, the switch from plantar flexor to tibialis anterior activity was less pronounced than in typically developing children due to increased muscle co-activation of the plantar flexors and tibialis anterior throughout the response. Our results thus suggest that a reduction in reciprocal inhibition causes muscle co-activation in reactive standing balance in children with cerebral palsy.


Assuntos
Paralisia Cerebral , Músculo Esquelético , Equilíbrio Postural , Paralisia Cerebral/fisiopatologia , Humanos , Equilíbrio Postural/fisiologia , Criança , Masculino , Feminino , Músculo Esquelético/fisiopatologia , Fenômenos Biomecânicos , Rotação , Eletromiografia , Biologia Computacional , Adolescente
2.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746237

RESUMO

Understanding individuals' distinct movement patterns is crucial for health, rehabilitation, and sports. Recently, we developed a machine learning-based framework to show that "gait signatures" describing the neuromechanical dynamics governing able-bodied and post-stroke gait kinematics remain individual-specific across speeds. However, we only evaluated gait signatures within a limited speed range and number of participants, using only sagittal plane (i.e., 2D) joint angles. Here we characterized changes in gait signatures across a wide range of speeds, from very slow (0.3 m/s) to exceptionally fast (above the walk-to-run transition speed) in 17 able-bodied young adults. We further assessed whether 3D kinematic and/or kinetic (ground reaction forces, joint moments, and powers) data would improve the discrimination of gait signatures. Our study showed that gait signatures remained individual-specific across walking speeds: Notably, 3D kinematic signatures achieved exceptional accuracy (99.8%, confidence interval (CI): 99.1-100%) in classifying individuals, surpassing both 2D kinematics and 3D kinetics. Moreover, participants exhibited consistent, predictable linear changes in their gait signatures across the entire speed range. These changes were associated with participants' preferred walking speeds, balance ability, cadence, and step length. These findings support gait signatures as a tool to characterize individual differences in gait and predict speed-induced changes in gait dynamics.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38526884

RESUMO

Joint hyper-resistance is a common symptom in neurological disorders. It has both neural and non-neural origins, but it has been challenging to distinguish different origins based on clinical tests alone. Combining instrumented tests with parameter identification based on a neuromechanical model may allow us to dissociate the different origins of joint hyper-resistance in individual patients. However, this requires that the model captures the underlying mechanisms. Here, we propose a neuromechanical model that, in contrast to previously proposed models, accounts for muscle short-range stiffness (SRS) and its interaction with muscle tone and reflex activity. We collected knee angle trajectories during the pendulum test in 15 children with cerebral palsy (CP) and 5 typically developing children. We did the test in two conditions - hold and pre-movement - that have been shown to alter knee movement. We modeled the lower leg as an inverted pendulum actuated by two antagonistic Hill-type muscles extended with SRS. Reflex activity was modeled as delayed, linear feedback from muscle force. We estimated neural and non-neural parameters by optimizing the fit between simulated and measured knee angle trajectories during the hold condition. The model could fit a wide range of knee angle trajectories in the hold condition. The model with personalized parameters predicted the effect of pre-movement demonstrating that the model captured the underlying mechanism and subject-specific deficits. Our model may help with the identification of neural and non-neural origins of joint hyper-resistance and thereby opens perspectives for improved diagnosis and treatment selection in children with spastic CP, but such applications require further studies to establish the method's reliability.


Assuntos
Paralisia Cerebral , Espasticidade Muscular , Criança , Humanos , Reprodutibilidade dos Testes , Movimento , Joelho , Músculo Esquelético/fisiologia
4.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38413231

RESUMO

Fluctuations in brain activity alter how we perceive our body and generate movements but have not been investigated in functional whole-body behaviors. During reactive balance, we recently showed that evoked brain activity is associated with the balance ability in young individuals. Furthermore, in PD, impaired whole-body motion perception in reactive balance is associated with impaired balance. Here, we investigated the brain activity during the whole-body motion perception in reactive balance in young adults (9 female, 10 male). We hypothesized that both ongoing and evoked cortical activity influences the efficiency of information processing for successful perception and movement during whole-body behaviors. We characterized two cortical signals using electroencephalography localized to the SMA: (1) the "N1," a perturbation-evoked potential that decreases in amplitude with expectancy and is larger in individuals with lower balance function, and (2) preperturbation ß power, a transient rhythm that favors maintenance of the current sensorimotor state and is inversely associated with tactile perception. In a two-alternative forced choice task, participants judged whether pairs of backward support surface perturbations during standing were in the "same" or "different" direction. As expected, lower whole-body perception was associated with lower balance ability. Within a perturbation pair, N1 attenuation was larger on correctly perceived trials and associated with better balance, but not perception. In contrast, preperturbation ß power was higher on incorrectly perceived trials and associated with poorer perception, but not balance. Together, ongoing and evoked cortical activity have unique roles in information processing that give rise to distinct associations with perceptual and balance ability.


Assuntos
Percepção de Movimento , Equilíbrio Postural , Adulto Jovem , Humanos , Masculino , Feminino , Equilíbrio Postural/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Movimento , Percepção de Movimento/fisiologia
5.
Sci Rep ; 14(1): 3614, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351215

RESUMO

Physical human-robot interactions (pHRI) often provide mechanical force and power to aid walking without requiring voluntary effort from the human. Alternatively, principles of physical human-human interactions (pHHI) can inspire pHRI that aids walking by engaging human sensorimotor processes. We hypothesize that low-force pHHI can intuitively induce a person to alter their walking through haptic communication. In our experiment, an expert partner dancer influenced novice participants to alter step frequency solely through hand interactions. Without prior instruction, training, or knowledge of the expert's goal, novices decreased step frequency 29% and increased step frequency 18% based on low forces (< 20 N) at the hand. Power transfer at the hands was 3-700 × smaller than what is necessary to propel locomotion, suggesting that hand interactions did not mechanically constrain the novice's gait. Instead, the sign/direction of hand forces and power may communicate information about how to alter walking. Finally, the expert modulated her arm effective dynamics to match that of each novice, suggesting a bidirectional haptic communication strategy for pHRI that adapts to the human. Our results provide a framework for developing pHRI at the hand that may be applicable to assistive technology and physical rehabilitation, human-robot manufacturing, physical education, and recreation.


Assuntos
Robótica , Humanos , Feminino , Robótica/métodos , Marcha , Caminhada , Locomoção , Fenômenos Mecânicos
6.
Elife ; 122024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411613

RESUMO

Brain somatic mutations in various components of the mTOR complex 1 (mTORC1) pathway have emerged as major causes of focal malformations of cortical development and intractable epilepsy. While these distinct gene mutations converge on excessive mTORC1 signaling and lead to common clinical manifestations, it remains unclear whether they cause similar cellular and synaptic disruptions underlying cortical network hyperexcitability. Here, we show that in utero activation of the mTORC1 activator genes, Rheb or MTOR, or biallelic inactivation of the mTORC1 repressor genes, Depdc5, Tsc1, or Pten in the mouse medial prefrontal cortex leads to shared alterations in pyramidal neuron morphology, positioning, and membrane excitability but different changes in excitatory synaptic transmission. Our findings suggest that, despite converging on mTORC1 signaling, mutations in different mTORC1 pathway genes differentially impact cortical excitatory synaptic activity, which may confer gene-specific mechanisms of hyperexcitability and responses to therapeutic intervention.


Assuntos
Epilepsia Resistente a Medicamentos , Neurônios , Animais , Camundongos , Células Piramidais , Encéfalo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética
7.
bioRxiv ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-37609221

RESUMO

Brain somatic mutations in various components of the mTOR complex 1 (mTORC1) pathway have emerged as major causes of focal malformations of cortical development and intractable epilepsy. While these distinct gene mutations converge on excessive mTORC1 signaling and lead to common clinical manifestations, it remains unclear whether they cause similar cellular and synaptic disruptions underlying cortical network hyperexcitability. Here, we show that in utero activation of the mTORC1 activators, Rheb or mTOR, or biallelic inactivation of the mTORC1 repressors, Depdc5, Tsc1, or Pten in mouse medial prefrontal cortex leads to shared alterations in pyramidal neuron morphology, positioning, and membrane excitability but different changes in excitatory synaptic transmission. Our findings suggest that, despite converging on mTORC1 signaling, mutations in different mTORC1 pathway genes differentially impact cortical excitatory synaptic activity, which may confer gene-specific mechanisms of hyperexcitability and responses to therapeutic intervention.

8.
Exp Physiol ; 109(1): 112-124, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428622

RESUMO

Computational models can be critical to linking complex properties of muscle spindle organs to the sensory information that they encode during behaviours such as postural sway and locomotion where few muscle spindle recordings exist. Here, we augment a biophysical muscle spindle model to predict the muscle spindle sensory signal. Muscle spindles comprise several intrafusal muscle fibres with varied myosin expression and are innervated by sensory neurons that fire during muscle stretch. We demonstrate how cross-bridge dynamics from thick and thin filament interactions affect the sensory receptor potential at the spike initiating region. Equivalent to the Ia afferent's instantaneous firing rate, the receptor potential is modelled as a linear sum of the force and rate change of force (yank) of a dynamic bag1 fibre and the force of a static bag2/chain fibre. We show the importance of inter-filament interactions in (i) generating large changes in force at stretch onset that drive initial bursts and (ii) faster recovery of bag fibre force and receptor potential following a shortening. We show how myosin attachment and detachment rates qualitatively alter the receptor potential. Finally, we show the effect of faster recovery of receptor potential on cyclic stretch-shorten cycles. Specifically, the model predicts history-dependence in muscle spindle receptor potentials as a function of inter-stretch interval (ISI), pre-stretch amplitude and the amplitude of sinusoidal stretches. This model provides a computational platform for predicting muscle spindle response in behaviourally relevant stretches and can link myosin expression seen in healthy and diseased intrafusal muscle fibres to muscle spindle function.


Assuntos
Fibras Musculares Esqueléticas , Fusos Musculares , Fusos Musculares/fisiologia , Células Receptoras Sensoriais , Sarcômeros , Miosinas/metabolismo
9.
Exp Physiol ; 109(1): 148-158, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856330

RESUMO

Muscle spindles relay vital mechanosensory information for movement and posture, but muscle spindle feedback is coupled to skeletal motion by a compliant tendon. Little is known about the effects of tendon compliance on muscle spindle feedback during movement, and the complex firing of muscle spindles makes these effects difficult to predict. Our goal was to investigate changes in muscle spindle firing using added series elastic elements (SEEs) to mimic a more compliant tendon, and to characterize the accompanying changes in firing with respect to muscle-tendon unit (MTU) and muscle fascicle displacements (recorded via sonomicrometry). Sinusoidal, ramp-and-hold and triangular stretches were analysed to examine potential changes in muscle spindle instantaneous firing rates (IFRs) in locomotor- and perturbation-like stretches as well as serial history dependence. Added SEEs effectively reduced overall MTU stiffness and generally reduced muscle spindle firing rates, but the effect differed across stretch types. During sinusoidal stretches, peak and mean firing rates were not reduced and IFR was best-correlated with fascicle velocity. During ramp stretches, SEEs reduced the initial burst, dynamic and static responses of the spindle. Notably, IFR was negatively related to fascicle displacement during the hold phase. During triangular stretches, SEEs reduced the mean IFR during the first and second stretches, affecting the serial history dependence of mean IFR. Overall, these results demonstrate that tendon compliance may attenuate muscle spindle feedback during movement, but these changes cannot be fully explained by reduced muscle fascicle length or velocity, or MTU force.


Assuntos
Fusos Musculares , Músculo Esquelético , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Movimento , Postura
10.
medRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076827

RESUMO

Cortical resources are typically engaged for balance and mobility in older adults, but these resources are impaired post-stroke. Although slowed balance and mobility after stroke have been well-characterized, the effects of unilateral cortical lesions due to stroke on neuromechanical control of balance is poorly understood. Our central hypothesis is that stroke impairs the ability to rapidly and effectively engage the cerebral cortex during balance and mobility behaviors, resulting in asymmetrical contributions of each limb to balance control. Using electroencephalography (EEG), we assessed cortical N1 responses evoked over fronto-midline regions (Cz) during balance recovery in response to backward support-surface perturbations loading both legs, as well as posterior-lateral directions that preferentially load the paretic or nonparetic leg. Cortical N1 responses were smaller and delayed in the stroke group. While older adults exhibited weak or absent relationships between cortical responses and clinical function, stroke survivors exhibited strong associations between slower N1 latencies and slower walking, lower clinical mobility, and lower balance function. We further assessed kinetics of balance recovery during perturbations using center of pressure rate of rise. During backward support-surface perturbations that loaded the legs bilaterally, balance recovery kinetics were not different between stroke and control groups and were not associated with cortical response latency. However, lateralized perturbations revealed slower kinetic reactions during paretic loading compared to controls, and to non-paretic loading within stroke participants. Individuals post stroke had similar nonparetic-loaded kinetic reactions to controls implicating that they effectively compensate for impaired paretic leg kinetics when relying on the non-paretic leg. In contrast, paretic-loaded balance recovery revealed time-synchronized associations between slower cortical responses and slower kinetic reactions only in the stroke group, potentially reflecting the limits of cortical engagement for balance recovery revealed within the behavioral context of paretic motor capacity. Overall, our results implicate individuals after stroke may be uniquely limited in their balance ability by the slowed speed of their cortical engagement, particularly under challenging balance conditions that rely on the paretic leg. We expect this neuromechanical insight will enable progress toward an individualized framework for the assessment and treatment of balance impairments based on the interaction between neuropathology and behavioral context.

11.
medRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986791

RESUMO

Background: Joint hyper-resistance is a common symptom in cerebral palsy (CP). It is assessed by rotating the joint of a relaxed patient. Joint rotations also occur when perturbing functional movements. Therefore, joint hyper-resistance might contribute to reactive balance impairments in CP. Aim: To investigate relationships between altered muscle responses to isolated joint rotations and perturbations of standing balance in children with CP. Methods & procedures: 20 children with CP participated in the study. During an instrumented spasticity assessment, the ankle was rotated as fast as possible from maximal plantarflexion towards maximal dorsiflexion. Standing balance was perturbed by backward support-surface translations and toe-up support-surface rotations. Gastrocnemius, soleus, and tibialis anterior electromyography was measured. We quantified reduced reciprocal inhibition by plantarflexor-dorsiflexor co-activation and the neural response to stretch by average muscle activity. We evaluated the relation between muscle responses to ankle rotation and balance perturbations using linear mixed models. Outcomes & results: Co-activation during isolated joint rotations and perturbations of standing balance was correlated across all levels. The neural response to stretch during isolated joint rotations and balance perturbations was not correlated. Conclusions & implications: Reduced reciprocal inhibition during isolated joint rotations might be a predictor of altered reactive balance control strategies.

12.
PLoS Comput Biol ; 19(10): e1011556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37889927

RESUMO

Locomotion results from the interactions of highly nonlinear neural and biomechanical dynamics. Accordingly, understanding gait dynamics across behavioral conditions and individuals based on detailed modeling of the underlying neuromechanical system has proven difficult. Here, we develop a data-driven and generative modeling approach that recapitulates the dynamical features of gait behaviors to enable more holistic and interpretable characterizations and comparisons of gait dynamics. Specifically, gait dynamics of multiple individuals are predicted by a dynamical model that defines a common, low-dimensional, latent space to compare group and individual differences. We find that highly individualized dynamics-i.e., gait signatures-for healthy older adults and stroke survivors during treadmill walking are conserved across gait speed. Gait signatures further reveal individual differences in gait dynamics, even in individuals with similar functional deficits. Moreover, components of gait signatures can be biomechanically interpreted and manipulated to reveal their relationships to observed spatiotemporal joint coordination patterns. Lastly, the gait dynamics model can predict the time evolution of joint coordination based on an initial static posture. Our gait signatures framework thus provides a generalizable, holistic method for characterizing and predicting cyclic, dynamical motor behavior that may generalize across species, pathologies, and gait perturbations.


Assuntos
Marcha , Caminhada , Humanos , Idoso , Fenômenos Biomecânicos , Locomoção , Velocidade de Caminhada
13.
Front Neurosci ; 17: 1257056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680968

RESUMO

Hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway during neurodevelopment leads to focal cortical malformations associated with intractable seizures. Recent evidence suggests that dysregulated cap-dependent translation downstream of mTORC1 contributes to cytoarchitectural abnormalities and seizure activity. Here, we examined whether reducing cap-dependent translation by expressing a constitutively active form of the translational repressor, 4E-BP1, downstream of mTORC1 would prevent the development of cortical malformations and seizures. 4E-BP1CA was expressed embryonically either in radial glia (neural progenitor cells) that generate cortical layer 2/3 pyramidal neurons or in migrating neurons destined to layer 2/3 using a conditional expression system. In both conditions, 4E-BP1CA expression reduced mTORC1-induced neuronal hypertrophy and alleviated cortical mislamination, but a subset of ectopic neurons persisted in the deep layers and the white matter. Despite the above improvements, 4E-BP1CA expression in radial glia had no effects on seizure frequency and further exacerbated behavioral seizure severity associated with mTORC1 hyperactivation. In contrast, conditional 4E-BP1CA expression in migratory neurons mitigated the severity of behavioral seizures but the seizure frequency remained unchanged. These findings advise against targeting 4E-BPs by 4E-BP1CA expression during embryonic development for seizure prevention and suggest the presence of a development-dependent role for 4E-BPs in mTORC1-induced epilepsy.

14.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37661732

RESUMO

The contributions of intrinsic muscle fiber resistance during mechanical perturbations to standing and other postural behaviors are unclear. Muscle short-range stiffness is known to vary depending on the current level and history of the muscle's activation, as well as the muscle's recent movement history; this property has been referred to as history dependence or muscle thixotropy. However, we currently lack sufficient data about the degree to which muscle stiffness is modulated across posturally relevant characteristics of muscle stretch and activation. We characterized the history dependence of muscle's resistance to stretch in single, permeabilized, activated, muscle fibers in posturally relevant stretch conditions and activation levels. We used a classic paired muscle stretch paradigm, varying the amplitude of a 'conditioning' triangular stretch-shorten cycle followed by a 'test' ramp-and-hold imposed after a variable inter-stretch interval. We tested low (<15%), intermediate (15-50%) and high (>50%) muscle fiber activation levels, evaluating short-range stiffness and total impulse in the test stretch. Muscle fiber resistance to stretch remained high at conditioning amplitudes of <1% optimal fiber length, L0, and inter-stretch intervals of >1 s, characteristic of healthy standing postural sway. An ∼70% attenuation of muscle resistance to stretch was reached at conditioning amplitudes of >3% L0 and inter-stretch intervals of <0.1 s, characteristic of larger, faster postural sway in balance-impaired individuals. The thixotropic changes cannot be predicted solely on muscle force at the time of stretch. Consistent with the disruption of muscle cross-bridges, muscle resistance to stretch during behavior can be substantially attenuated if the prior motion is large enough and/or frequent enough.


Assuntos
Movimento , Contração Muscular , Humanos , Contração Muscular/fisiologia , Movimento/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Movimento (Física) , Músculo Esquelético/fisiologia
15.
bioRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662247

RESUMO

Fluctuations in brain state alter how we perceive our body and generate movements but have not been investigated in functional whole-body behaviors. During reactive balance control, we recently showed that evoked brain activity is associated with balance ability in healthy young individuals. Further, in individuals with Parkinson's disease, impairments in whole-body motion perception in reactive balance are associated with clinical balance impairment. Here we investigated brain activity during whole-body motion perception in reactive balance in healthy young adults. We hypothesized that flexibility in brain states underlies successful perception and movement during whole-body movement. We characterized two cortical sensorimotor signals using electroencephalography localized to the supplementary motor area: 1) the "N1 response", a perturbation-evoked potential that decreases in amplitude with expectancy and is larger in individuals with lower balance function; and 2) pre-perturbation beta oscillatory activity, a rhythm that favors maintenance of the current sensorimotor state and is inversely associated with perception in seated somatosensory perceptual tasks. In a two-alternative forced choice task, participants judged whether pairs of backward support-surface perturbations during standing were in the "same" or "different" direction. As expected, lower whole-body perception was associated with lower balance ability. Within a perturbation pair, N1 attenuation was larger on correctly perceived trials and associated with better balance, but not perception. In contrast, pre-perturbation beta power was higher on incorrectly perceived trials and associated with poorer perception, but not balance. Taken together, flexibility in different cortical processes influences perceptual accuracy but have distinct associations with balance and perceptual ability.

16.
Exp Brain Res ; 241(10): 2419-2431, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648801

RESUMO

The error-related negativity (ERN) is a neural correlate of error monitoring often used to investigate individual differences in developmental, mental health, and adaptive contexts. However, limited experimental control over errors presents several confounds to its measurement. An experimentally controlled disturbance to standing balance evokes the balance N1, which we previously suggested may share underlying mechanisms with the ERN based on a number of shared features and factors. We now measure whether the balance N1 and ERN are correlated across individuals within two small groups (N = 21 young adults and N = 20 older adults). ERNs were measured in arrow flanker tasks using hand and foot response modalities (ERN-hand and ERN-foot). The balance N1 was evoked by sudden slip-like movements of the floor while standing. The ERNs and the balance N1 showed good and excellent internal consistency, respectively, and were correlated in amplitude in both groups. One principal component strongly loaded on all three evoked potentials, suggesting that the majority of individual differences are shared across the three ERPs. However, there remains a significant component of variance shared between the ERN-hand and ERN-foot beyond what they share with the balance N1. It is unclear whether this component of variance is specific to the arrow flanker task, or something fundamentally related to error processing that is not evoked by a sudden balance disturbance. If the balance N1 were to reflect error processing mechanisms indexed by the ERN, balance paradigms offer several advantages in terms of experimental control over errors.


Assuntos
, Mãos , Adulto Jovem , Humanos , Idoso , Extremidade Inferior , Extremidade Superior , Individualidade
17.
Nature ; 620(7974): 521-524, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495696

RESUMO

Boyle's 1662 observation that the volume of a gas is, at constant temperature, inversely proportional to pressure, offered a prototypical example of how an equation of state (EoS) can succinctly capture key properties of a many-particle system. Such relationships are now cornerstones of equilibrium thermodynamics1. Extending thermodynamic concepts to far-from-equilibrium systems is of great interest in various contexts, including glasses2,3, active matter4-7 and turbulence8-11, but is in general an open problem. Here, using a homogeneous ultracold atomic Bose gas12, we experimentally construct an EoS for a turbulent cascade of matter waves13,14. Under continuous forcing at a large length scale and dissipation at a small one, the gas exhibits a non-thermal, but stationary, state, which is characterized by a power-law momentum distribution15 sustained by a scale-invariant momentum-space energy flux16. We establish the amplitude of the momentum distribution and the underlying energy flux as equilibrium-like state variables, related by an EoS that does not depend on the details of the energy injection or dissipation, or on the history of the system. Moreover, we show that the equations of state for a wide range of interaction strengths and gas densities can be empirically scaled onto each other. This results in a universal dimensionless EoS that sets benchmarks for the theory and should also be relevant for other turbulent systems.

18.
J Neurophysiol ; 129(6): 1378-1388, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37162064

RESUMO

Muscle coactivation increases in challenging balance conditions as well as with advanced age and mobility impairments. Increased muscle coactivation can occur both in anticipation of (feedforward) and in reaction to (feedback) perturbations, however, the causal relationship between feedforward and feedback muscle coactivation remains elusive. Here, we hypothesized that feedforward muscle coactivation would increase both the body's initial mechanical resistance due to muscle intrinsic properties and the later feedback-mediated muscle coactivation in response to postural perturbations. Young adults voluntarily increased leg muscle coactivation using visual biofeedback before support-surface perturbations. In contrast to our hypothesis, feedforward muscle coactivation did not increase the body's initial intrinsic resistance to perturbations, nor did it increase feedback muscle coactivation. Rather, perturbations with feedforward muscle coactivation elicited a medium- to long-latency increase of feedback-mediated agonist activity but a decrease of feedback-mediated antagonist activity. This reciprocal rather than coactivation effect on ankle agonist and antagonist muscles enabled faster reactive ankle torque generation, reduced ankle dorsiflexion, and reduced center of mass (CoM) motion. We conclude that in young adults, voluntary feedforward muscle coactivation can be independently modulated with respect to feedback-mediated muscle coactivation. Furthermore, our findings suggest feedforward muscle coactivation may be useful for enabling quicker joint torque generation through reciprocal, rather than coactivated, agonist-antagonist feedback muscle activity. As such our results suggest that behavioral context is critical to whether muscle coactivation functions to increase agility versus stability.NEW & NOTEWORTHY Feedforward and feedback muscle coactivation are commonly observed in older and mobility impaired adults and are considered strategies to improve stability by increasing body stiffness prior to and in response to perturbations. In young adults, voluntary feedforward coactivation does not necessarily increase feedback coactivation in response to perturbations. Instead, feedforward coactivation enabled faster ankle torques through reciprocal agonist-antagonist muscle activity. As such, coactivation may promote either agility or stability depending on the behavioral context.


Assuntos
Tornozelo , Músculo Esquelético , Adulto Jovem , Humanos , Idoso , Músculo Esquelético/fisiologia , Articulação do Tornozelo/fisiologia , Contração Isométrica/fisiologia , Posição Ortostática , Eletromiografia/métodos , Equilíbrio Postural/fisiologia
19.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37215007

RESUMO

Muscle spindles relay vital mechanosensory information for movement and posture, but muscle spindle feedback is coupled to skeletal motion by a compliant tendon. Little is known about the effects of tendon compliance on muscle spindle feedback during movement, and the complex firing of muscle spindles make these effects difficult to predict. Our goal was to investigate changes in muscle spindle firing using added series elastic elements (SEEs) to mimic a more compliant tendon, and to characterize the accompanying changes in firing with respect to muscle-tendon unit (MTU) and muscle fascicle displacements (recorded via sonomicrometry). Sinusoidal, ramp-hold-release, and triangular stretches were analyzed to examine potential changes in muscle spindle instantaneous firing rates (IFRs) in locomotor- and perturbation-like stretches as well as history dependence. Added SEEs effectively reduced overall MTU stiffness and generally reduced muscle spindle firing rates, but the effect differed across stretch types. During sinusoidal stretches, peak firing rates were reduced and IFR was strongly correlated with fascicle velocity. During ramp stretches, SEEs reduced the dynamic and static responses of the spindle during lengthening but had no effect on initial bursts at the onset of stretch. Notably, IFR was negatively related to fascicle displacement during the hold phase. During triangular stretches, SEEs reduced the mean IFR during the first and second stretches, affecting the history dependence of mean IFR. Overall, these results demonstrate that tendon compliance may attenuate muscle spindle feedback during movement, but these changes cannot be fully explained by reduced muscle fascicle length and velocity.

20.
Artigo em Inglês | MEDLINE | ID: mdl-36900842

RESUMO

To reduce the burden of chronic diseases on society and individuals, European countries implemented chronic Disease Management Programs (DMPs) that focus on the management of a single chronic disease. However, due to the fact that the scientific evidence that DMPs reduce the burden of chronic diseases is not convincing, patients with multimorbidity may receive overlapping or conflicting treatment advice, and a single disease approach may be conflicting with the core competencies of primary care. In addition, in the Netherlands, care is shifting from DMPs to person-centred integrated care (PC-IC) approaches. This paper describes a mixed-method development of a PC-IC approach for the management of patients with one or more chronic diseases in Dutch primary care, executed from March 2019 to July 2020. In Phase 1, we conducted a scoping review and document analysis to identify key elements to construct a conceptual model for delivering PC-IC care. In Phase 2, national experts on Diabetes Mellitus type 2, cardiovascular diseases, and chronic obstructive pulmonary disease and local healthcare providers (HCP) commented on the conceptual model using online qualitative surveys. In Phase 3, patients with chronic conditions commented on the conceptual model in individual interviews, and in Phase 4 the conceptual model was presented to the local primary care cooperatives and finalized after processing their comments. Based on the scientific literature, current practice guidelines, and input from a variety of stakeholders, we developed a holistic, person-centred, integrated approach for the management of patients with (multiple) chronic diseases in primary care. Future evaluation of the PC-IC approach will show if this approach leads to more favourable outcomes and should replace the current single-disease approach in the management of chronic conditions and multimorbidity in Dutch primary care.


Assuntos
Prestação Integrada de Cuidados de Saúde , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Crônica , Assistência Centrada no Paciente/métodos , Gerenciamento Clínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...