Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954220

RESUMO

Biosurfactants, sustainable alternatives to petrochemical surfactants, are gaining attention for their potential in medical applications. This study focuses on producing, purifying, and characterizing a glycolipid biosurfactant from Candida sp. UFSJ7A, particularly for its application in biofilm prevention on siliconized latex catheter surfaces. The glycolipid was extracted and characterized, revealing a critical micellar concentration (CMC) of 0.98 mg/mL, indicating its efficiency at low concentrations. Its composition, confirmed through Fourier transform infrared spectroscopy (FT-IR) and thin layer chromatography (TLC), identified it as an anionic biosurfactant with a significant ionic charge of -14.8 mV. This anionic nature contributes to its biofilm prevention capabilities. The glycolipid showed a high emulsification index (E24) for toluene, gasoline, and soy oil and maintained stability under various pH and temperature conditions. Notably, its anti-adhesion activity against biofilms formed by Escherichia coli, Enterococcus faecalis, and Candida albicans was substantial. When siliconized latex catheter surfaces were preconditioned with 2 mg/mL of the glycolipid, biofilm formation was reduced by up to 97% for E. coli and C. albicans and 57% for E. faecalis. These results are particularly significant when compared to the efficacy of conventional surfactants like SDS, especially for E. coli and C. albicans. This study highlights glycolipids' potential as a biotechnological tool in reducing biofilm-associated infections on medical devices, demonstrating their promising applicability in healthcare settings.

2.
Antibiotics (Basel) ; 13(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38247637

RESUMO

Antimicrobial peptides have been developed based on plant-derived molecular scaffolds for the treatment of infectious diseases. Chenopodin is an abundant seed storage protein in quinoa, an Andean plant with high nutritional and therapeutic properties. Here, we used computer- and physicochemical-based strategies and designed four peptides derived from the primary structure of Chenopodin. Two peptides reproduce natural fragments of 14 amino acids from Chenopodin, named Chen1 and Chen2, and two engineered peptides of the same length were designed based on the Chen1 sequence. The two amino acids of Chen1 containing amide side chains were replaced by arginine (ChenR) or tryptophan (ChenW) to generate engineered cationic and hydrophobic peptides. The evaluation of these 14-mer peptides on Staphylococcus aureus and Escherichia coli showed that Chen1 does not have antibacterial activity up to 512 µM against these strains, while other peptides exhibited antibacterial effects at lower concentrations. The chemical substitutions of glutamine and asparagine by amino acids with cationic or aromatic side chains significantly favoured their antibacterial effects. These peptides did not show significant hemolytic activity. The fluorescence microscopy analysis highlighted the membranolytic nature of Chenopodin-derived peptides. Using molecular dynamic simulations, we found that a pore is formed when multiple peptides are assembled in the membrane. Whereas, some of them form secondary structures when interacting with the membrane, allowing water translocations during the simulations. Finally, Chen2 and ChenR significantly reduced SARS-CoV-2 infection. These findings demonstrate that Chenopodin is a highly useful template for the design, engineering, and manufacturing of non-toxic, antibacterial, and antiviral peptides.

3.
Recent Pat Biotechnol ; 17(4): 376-394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36650654

RESUMO

BACKGROUND: Biosurfactants are natural bioactive compounds produced from fungi, bacteria and plants. These molecules have several properties that enable them to be involved in various industrial applications. The surface-active properties of biosurfactants allow their use in various sectors, such as agriculture, health, cosmetics, bioremediation/ petroleum, mining, and bioprocess. OBJECTIVE: The objective of this study was to analyze the patents deposited in intellectual property databases for applications of biosurfactants in the areas of agriculture, health, cosmetics, bioremediation/petroleum, mining, and bioprocesses, with the research period consisting of the last six years. METHODS: This study targeted the use of biosurfactants in various industrial sectors. The patent search was carried out using the Google Patents platform, a platform that is commonly used for this purpose and freely accessible. RESULTS: During the search for patents related to applications of biosurfactants in industry filed in the last 6 years, results were found to be distributed in the following areas: agriculture (70), cosmetics (2311), bioremediation/petroleum (179), health (1794), mining (5), and bioprocess (133). Six patents were selected from each area, except for health and mining, for which the search resulted in only 5 and 4 patents, respectively, to be discussed and provide information on the biotechnological applications of biosurfactants in the industry. CONCLUSION: The present study showed a wide area of application of biosurfactants in industry. The interest in the inclusion of biosurfactants in the industry is directly related to the need for more sustainable solutions to solve real market problems. The cosmetics sector presented the most patents that employ the use of biosurfactants.


Assuntos
Cosméticos , Petróleo , Tensoativos , Patentes como Assunto , Biotecnologia , Indústrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...