Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208390

RESUMO

APE1 (DNA (apurinic/apyrimidinic site) endonuclease 1) is a key enzyme of one of the major DNA repair routes, the BER (base excision repair) pathway. APE1 fulfils additional functions, acting as a redox regulator of transcription factors and taking part in RNA metabolism. The mechanisms regulating APE1 are still being deciphered. Structurally, human APE1 consists of a well-characterized globular catalytic domain responsible for its endonuclease activity, preceded by a conformationally flexible N-terminal extension, acquired along evolution. This N-terminal tail appears to play a prominent role in the modulation of APE1 and probably in BER coordination. Thus, it is primarily involved in mediating APE1 localization, post-translational modifications, and protein-protein interactions, with all three factors jointly contributing to regulate the enzyme. In this review, recent insights on the regulatory role of the N-terminal region in several aspects of APE1 function are covered. In particular, interaction of this region with nucleophosmin (NPM1) might modulate certain APE1 activities, representing a paradigmatic example of the interconnection between various regulatory factors.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Sequência de Aminoácidos , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Nucleofosmina , Domínios Proteicos , Processamento de Proteína Pós-Traducional
2.
Gait Posture ; 83: 147-151, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152609

RESUMO

BACKGROUND: The purpose of this study was to analyse the effects of ten weeks of different running-retraining programmes on rearfoot strike (RFS) prevalence in adolescents. RESEARCH QUESTION: it is possible to change foot strike pattern in adolescents? METHODS: A total of 180 children (45.3% girls), aged 13-16 years, participated in this intervention study. The children were randomly assigned to one of three experimental groups (EGs) that each carried out a different retraining programme, based on running technique (n = 39), a 15% increased step frequency (SF) (n = 37) and barefoot training (n = 30), performed for three days each week. A control group (CG) (n = 43) did not perform any retraining. A 2D video-based analysis (240 Hz) was used to determine the RFS. RESULTS: At baseline, no significant differences in RFS prevalence were found between the EGs and the CG in either the left (χ2 = 2.048; p = 0.559) or the right foot (χ2 = 0.898; p = 0.825). In the post-test, no significant differences were found for the left foot (χ2 = 7.102; p = 0.069), but there were significant differences for the right foot (χ2 = 9.239; p = 0.025) were observed. In the re-test, no significant differences were found for either the left foot (χ2 = 2.665; p = 0.273) or the right foot (χ2 = 2.182; p = 0.325). In addition, no group displayed significant changes in RFS prevalence from the pre-test to the re-test. There was a trend towards a reduction in the RFS prevalence in both the increased SF group and the barefoot group. MEANING: The main finding of this study was that certain running-retraining programmes performed three times per week for ten weeks are not enough to modify the adolescent foot strike pattern (FSP).


Assuntos
Fenômenos Biomecânicos/fisiologia , Traumatismos do Pé/etiologia , Pé/fisiopatologia , Corrida/fisiologia , Adolescente , Feminino , Traumatismos do Pé/fisiopatologia , Humanos , Estudos Longitudinais , Masculino , Fatores de Tempo
3.
Gac. méd. Méx ; 156(6): 563-568, nov.-dic. 2020. tab
Artigo em Espanhol | LILACS | ID: biblio-1249968

RESUMO

Resumen Introducción: Los índices neutrófilo/linfocito (INL) y linfocito/proteína C reactiva (ILR) se usan para predecir severidad y mortalidad en diversas infecciones. Objetivo: Establecer en México el mejor punto de corte de INL e ILR para predecir la mortalidad en pacientes hospitalizados por COVID-19. Método: Estudio transversal analítico de pacientes hospitalizados por COVID-19 grave en un hospital de especialidades. Resultados: Falleció 34 % de 242 pacientes analizados. Los sujetos fallecidos tenían mayor edad (62 versus 51 años, p < 0.001), mayor prevalencia de hipertensión arterial sistémica > 10 años (59.4 versus 45.1 %, p = 0.022), así como INL más alto (17.66 versus 8.31, p < 0.001) e ILR más bajo (0.03 versus 0.06, p < 0.002) respecto a quienes sobrevivieron. Los puntos de corte para predecir mortalidad fueron INL > 12 e ILR < 0.03. La combinación de INL e ILR tuvo sensibilidad de 80 %, especificidad de 74 %, valor predictivo positivo de 46.15 %, valor predictivo negativo de 93.02 % y razón de momios de 11.429 para predecir la mortalidad. Conclusión: INL > 12 e ILR < 0.03 son biomarcadores útiles para evaluar el riesgo de mortalidad en pacientes mexicanos con COVID-19 grave.


Abstract Introduction: Neutrophil-to-lymphocyte (NLR) and lymphocyte-to-C-reactive protein (LCR) ratios are used to predict severity and mortality in various infections. Objective: To establish the best NLR and LCR cutoff point to predict mortality in patients hospitalized for COVID-19 in Mexico. Method: Analytical cross-sectional study of patients hospitalized for severe COVID-19 in a specialty hospital. Results: Out of 242 analyzed patients, 34 % died. The deceased subjects were older (62 vs. 51 years; p < 0.001), had a higher prevalence of > 10 years with systemic arterial hypertension (59.4 vs. 45.1 %, p = 0.022), as well as a higher NLR (17.66 vs. 8.31, p < 0.001) and lower LCR (0.03 vs. 0.06, p < 0.002] with regard to those who survived. The cutoff points to predict mortality were NLR > 12 and LCR < 0.03. The combination of NLR/LCR had a sensitivity of 80 %, specificity of 74 %, positive predictive value of 46.15 %, negative predictive value of 93.02 % and an odds ratio of 11.429 to predict mortality. Conclusion: NLR > 12 and LCR < 0.03 are useful biomarkers to evaluate the risk of mortality in Mexican patients with severe COVID- 19.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Proteína C-Reativa/metabolismo , Linfócitos/metabolismo , COVID-19/fisiopatologia , Neutrófilos/metabolismo , Índice de Gravidade de Doença , Estudos Transversais , Valor Preditivo dos Testes , Sensibilidade e Especificidade , COVID-19/mortalidade , México/epidemiologia
4.
Biochim Biophys Acta Proteins Proteom ; 1868(12): 140532, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853771

RESUMO

Nucleophosmin (NPM1) is a mostly nucleolar protein with crucial functions in cell growth and homeostasis, including regulation of ribosome biogenesis and stress response. Such multiple activities rely on its ability to interact with nucleic acids and with hundreds of proteins, as well as on a dynamic subcellular distribution. NPM1 is thus regulated by a complex interplay between localization and interactions, further modulated by post-translational modifications. NPM1 is a homopentamer, with globular domains connected by long, intrinsically disordered linkers. This configuration allows NPM1 to engage in liquid-liquid phase separation phenomena, which could underlie a key role in nucleolar organization. Here, we will discuss NPM1 conformational and functional versatility, emphasizing its emerging, and still largely unexplored, role in DNA damage repair. Since NPM1 is altered in a subtype of acute myeloid leukaemia (AML), we will also present ongoing research on the molecular mechanisms underlying its pathogenic role and potential NPM1-targeting therapeutic strategies.


Assuntos
Reparo do DNA , Proteínas Nucleares/metabolismo , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , Sequência de Aminoácidos , Animais , Biomarcadores , Biomarcadores Tumorais , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Imunofluorescência , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Modelos Moleculares , Terapia de Alvo Molecular , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Nucleofosmina , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , Relação Estrutura-Atividade
5.
DNA Repair (Amst) ; 88: 102809, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32092641

RESUMO

Nucleophosmin (NPM1), an abundant, nucleolar protein with multiple functions affecting cell homeostasis, has also been recently involved in DNA damage repair. The roles of NPM1 in different repair pathways remain however to be elucidated. NPM1 has been described to interact with APE1 (apurinic apyrimidinic endonuclease 1), a key enzyme of the base excision repair (BER) pathway, which could reflect a direct participation of NPM1 in this route. To gain insight into the possible role(s) of NPM1 in BER, we have explored the interplay between the subnuclear localization of both APE1 and NPM1, the in vitro interaction they establish, the effect of binding to abasic DNA on APE1 conformation, and the modulation by NPM1 of APE1 binding and catalysis on DNA. We have found that, upon oxidative damage, NPM1 is released from nucleoli and locates on patches throughout the chromatin, perhaps co-localizing with APE1, and that this traffic could be mediated by phosphorylation of NPM1 on T199. NPM1 and APE1 form a complex in vitro, involving, apart from the core domain, at least part of the linker region of NPM1, whereas the C-terminal domain is dispensable for binding, which explains that an AML leukemia-related NPM1 mutant with an unfolded C-terminal domain can bind APE1. APE1 interaction with abasic DNA stabilizes APE1 structure, as based on thermal unfolding. Moreover, our data suggest that NPM1, maybe by keeping APE1 in an "open" conformation, favours specific recognition of abasic sites on DNA, competing with off-target associations. Therefore, NPM1 might participate in BER favouring APE1 target selection as well as turnover from incised abasic DNA.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas Nucleares/metabolismo , DNA/genética , DNA/metabolismo , Humanos , Nucleofosmina , Ligação Proteica
6.
Gac Med Mex ; 156(6): 553-558, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33877103

RESUMO

INTRODUCTION: Neutrophil-to-lymphocyte (NLR) and lymphocyte-to-C-reactive protein (LCR) ratios are used to predict severity and mortality in various infections. OBJECTIVE: To establish the best NLR and LCR cutoff point to predict mortality in patients hospitalized for COVID-19 in Mexico. METHOD: Analytical cross-sectional study of patients hospitalized for severe COVID-19 in a specialty hospital. RESULTS: Out of 242 analyzed patients, 34 % died. The deceased subjects were older (62 vs. 51 years; p < 0.001), had a higher prevalence of > 10 years with systemic arterial hypertension (59.4 vs. 45.1 %, p = 0.022), as well as a higher NLR (17.66 vs. 8.31, p < 0.001) and lower LCR (0.03 vs. 0.06, p < 0.002) with regard to those who survived. The cutoff points to predict mortality were NLR > 12 and LCR < 0.03. The combination of NLR/LCR had a sensitivity of 80 %, specificity of 74 %, positive predictive value of 46.15 %, negative predictive value of 93.02 % and an odds ratio of 11.429 to predict mortality. CONCLUSION: NLR > 12 and LCR < 0.03 are useful biomarkers to evaluate the risk of mortality in Mexican patients with severe COVID- 19. INTRODUCCIÓN: Los índices neutrófilo/linfocito (INL) y linfocito/proteína C reactiva (ILR) se usan para predecir severidad y mortalidad en diversas infecciones. OBJETIVO: Establecer en México el mejor punto de corte de INL e ILR para predecir la mortalidad en pacientes hospitalizados por COVID-19. MÉTODO: Estudio transversal analítico de pacientes hospitalizados por COVID-19 grave en un hospital de especialidades. RESULTADOS: Falleció 34 % de 242 pacientes analizados. Los sujetos fallecidos tenían mayor edad (62 versus 51 años, p < 0.001), mayor prevalencia de hipertensión arterial sistémica > 10 años (59.4 versus 45.1 %, p = 0.022), así como INL más alto (17.66 versus 8.31, p < 0.001) e ILR más bajo (0.03 versus 0.06, p < 0.002) respecto a quienes sobrevivieron. Los puntos de corte para predecir mortalidad fueron INL > 12 e ILR < 0.03. La combinación de INL e ILR tuvo sensibilidad de 80 %, especificidad de 74 %, valor predictivo positivo de 46.15 %, valor predictivo negativo de 93.02 % y razón de momios de 11.429 para predecir la mortalidad. CONCLUSIÓN: INL > 12 e ILR < 0.03 son biomarcadores útiles para evaluar el riesgo de mortalidad en pacientes mexicanos con COVID-19 grave.


Assuntos
Proteína C-Reativa/metabolismo , COVID-19/fisiopatologia , Linfócitos/metabolismo , Neutrófilos/metabolismo , Adulto , Idoso , COVID-19/mortalidade , Estudos Transversais , Feminino , Humanos , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Índice de Gravidade de Doença
7.
Oncotarget ; 10(26): 2486-2507, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-31069012

RESUMO

The plasma membrane is an attractive target for new anticancer drugs, not least because regulating its lipid structure can control multiple signaling pathways involved in cancer cell proliferation, differentiation and survival. Accordingly, the novel anticancer drug hydroxytriolein (HTO) was designed to interact with and regulate the composition and structure of the membrane, which in turn controls the interaction of amphitropic signaling membrane proteins with the lipid bilayer. Changes in signaling provoked by HTO impair the growth of triple negative breast cancer (TNBC) cells, aggressive breast tumor cells that have a worse prognosis than other types of breast cancers and for which there is as yet no effective targeted therapy. HTO alters the lipid composition and structure of cancer cell membranes, inhibiting the growth of MDA-MB-231 and BT-549 TNBC cells in vitro. Depending on the cellular context, HTO could regulate two pathways involved in TNBC cell proliferation. On the one hand, HTO might stimulate ERK signaling and induce TNBC cell autophagy, while on the other, it could increase dihydroceramide and ceramide production, which would inhibit Akt independently of EGFR activation and provoke cell death. In vivo studies using a model of human TNBC show that HTO and its fatty acid constituent (2-hydroxyoleic acid) impair tumor growth, with no undesired side effects. For these reasons, HTO appears to be a promising anticancer molecule that targets the lipid bilayer (membrane-lipid therapy). By regulating membrane lipids, HTO controls important signaling pathways involved in cancer cell growth, the basis of its pharmacological efficacy and safety.

8.
J Ethnobiol Ethnomed ; 14(1): 38, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29843757

RESUMO

BACKGROUND: The traditional ecological knowledge of land of the Ch'ol originary people from southeast Mexico forms part of their cultural identity; it is local and holistic and implies an integrated physical and spiritual worldview that contributes to improve their living conditions. We analyzed the nomenclature for soil classification used in the Mexican state of Tabasco by the Ch'ol farmers with the objective of contributing to the knowledge of the Maya soil classification. METHODS: A map of the study area was generated from the digital database of parcels in the ejido Oxolotán in the municipality of Tacotalpa, to which a geopedological map was overlaid in order to obtain modeled topographic profiles (Zavala-Cruz et al., Ecosistemas y Recursos Agropecuarios 3:161-171, 2016). In each modeled profile, a soil profile was made and classified according to IUSS Working Group WRB (181, 2014) in order to generate a map of soil groups, which was used to survey the study area with the participation of 245 local Ch'ol farmers for establishing an ethnopedological soil classification (Ortiz et al.: 62, 1990). In addition, we organized a participatory workshop with 35 people to know details of the names of the soils and their indicators of fertility and workability, from which we selected 15 participants for field trips and description of soil profiles. RESULTS: The color, texture, and stoniness are attributes important in the Ch'ol nomenclature, although the names do not completely reflect the visible characteristic of the soil surface. On the other hand, the mere presence of stones is sufficient to name a land class, while according to IUSS Working Group WRB (181, 2014), a certain amount and distribution of stones in the soil profiles is necessary to be taken into consideration in the name. Perception of soil quality by local farmers considers the compaction or hardness of the cultivable soil layer, because of which black or sandy soils are perceived as better for cultivation of banana, or as secondary vegetation in fallow. Red, yellow, or brown soils are seen as of less quality and are only used for establishing grasslands, while maize is cultivated in all soil classes. CONCLUSIONS: Farmers provided the Ch'ol nomenclature, perceived problems, and uses of each class of soil. Translation of Ch'ol soil names and comparison with descriptions of soil profiles revealed that the Ch'ol soil nomenclature takes into account the soil profile, given it is based on characteristics of both surface and subsurface horizons including color of soil matrix and mottles, stoniness, texture, and vegetation.


Assuntos
Solo/classificação , Terminologia como Assunto , México
9.
Sci Rep ; 7(1): 13959, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066752

RESUMO

Nucleophosmin (NPM) is a nucleolar protein involved in ribosome assembly and cell homeostasis. Mutations in the C-terminal domain of NPM that impair native folding and localization are associated with acute myeloid leukemia (AML). We have performed a high-throughput screening searching for compounds that stabilize the C-terminal domain. We identified three hit compounds which show the ability to increase the thermal stability of both the C-terminal domain as well as full-length NPM. The best hit also seemed to favor folding of an AML-like mutant. Computational pocket identification and molecular docking support a stabilization mechanism based on binding of the phenyl/benzene group of the compounds to a particular hydrophobic pocket and additional polar interactions with solvent-accessible residues. Since these results indicate a chaperoning potential of our candidate hits, we tested their effect on the subcellular localization of AML-like mutants. Two compounds partially alleviated the aggregation and restored nucleolar localization of misfolded mutants. The identified hits appear promising as pharmacological chaperones aimed at therapies for AML based on conformational stabilization of NPM.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Mutação , Nucleofosmina , Domínios Proteicos/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
10.
J Lipid Res ; 58(8): 1598-1612, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28630259

RESUMO

Adult polyglucosan body disease (APBD) is a neurological disorder characterized by adult-onset neurogenic bladder, spasticity, weakness, and sensory loss. The disease is caused by aberrant glycogen branching enzyme (GBE) (GBE1Y329S) yielding less branched, globular, and soluble glycogen, which tends to aggregate. We explore here whether, despite being a soluble enzyme, GBE1 activity is regulated by protein-membrane interactions. Because soluble proteins can contact a wide variety of cell membranes, we investigated the interactions of purified WT and GBE1Y329S proteins with different types of model membranes (liposomes). Interestingly, both triheptanoin and some triacylglycerol mimetics (TGMs) we have designed (TGM0 and TGM5) markedly enhance GBE1Y329S activity, possibly enough for reversing APBD symptoms. We show that the GBE1Y329S mutation exposes a hydrophobic amino acid stretch, which can either stabilize and enhance or alternatively, reduce the enzyme activity via alteration of protein-membrane interactions. Additionally, we found that WT, but not Y329S, GBE1 activity is modulated by Ca2+ and phosphatidylserine, probably associated with GBE1-mediated regulation of energy consumption and storage. The thermal stabilization and increase in GBE1Y329S activity induced by TGM5 and its omega-3 oil structure suggest that this molecule has a considerable therapeutic potential for treating APBD.


Assuntos
Materiais Biomiméticos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Doença de Depósito de Glicogênio/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Triglicerídeos/metabolismo , Sequência de Aminoácidos , Materiais Biomiméticos/uso terapêutico , Estabilidade Enzimática , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Humanos , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica/efeitos dos fármacos , Temperatura
11.
Biochim Biophys Acta Biomembr ; 1859(9 Pt B): 1526-1535, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28411171

RESUMO

G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (HII) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi1 monomers had a higher affinity for lamellar phases, while Gßγ and Gαßγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.


Assuntos
Proteínas de Ligação ao GTP/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Diterpenos/farmacologia , Proteínas de Membrana/química , Multimerização Proteica
12.
Biochim Biophys Acta Biomembr ; 1859(9 Pt B): 1596-1603, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28284721

RESUMO

We have compared the effect of the commonly used ω-3 fatty acid, docosahexaenoic acid ethyl ester (DHA-EE), and of its 2-hydroxylated DHA form (DHA-H), on brain lipid composition, behavior and lifespan in a new human transgenic Drosophila melanogaster model of Alzheimer's disease (AD). The transgenic flies expressed human Aß42 and tau, and the overexpression of these human transgenes in the CNS of these flies produced progressive defects in motor function (antigeotaxic behavior) while reducing the animal's lifespan. Here, we demonstrate that both DHA-EE and DHA-H increase the longer chain fatty acids (≥18C) species in the heads of the flies, although only DHA-H produced an unknown chromatographic peak that corresponded to a non-hydroxylated lipid. In addition, only treatment with DHA-H prevented the abnormal climbing behavior and enhanced the lifespan of these transgenic flies. These benefits of DHA-H were confirmed in the well characterized transgenic PS1/APP mouse model of familial AD (5xFAD mice), mice that develop defects in spatial learning and in memory, as well as behavioral deficits. Hence, it appears that the modulation of brain lipid composition by DHA-H could have remedial effects on AD associated neurodegeneration. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Química Encefálica/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Lipídeos/análise , Atividade Motora/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Drosophila melanogaster , Ácidos Graxos/análise , Hidroxilação , Camundongos
14.
Biochim Biophys Acta ; 1851(11): 1511-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26253820

RESUMO

G proteins are fundamental elements in signal transduction involved in key cell responses, and their interactions with cell membrane lipids are critical events whose nature is not fully understood. Here, we have studied how the presence of myristic and palmitic acid moieties affects the interaction of the Gαi1 protein with model and biological membranes. For this purpose, we quantified the binding of purified Gαi1 protein and Gαi1 protein acylation mutants to model membranes, with lipid compositions that resemble different membrane microdomains. We observed that myristic and palmitic acids not only act as membrane anchors but also regulate Gαi1 subunit interaction with lipids characteristics of certain membrane microdomains. Thus, when the Gαi1 subunit contains both fatty acids it prefers raft-like lamellar membranes, with a high sphingomyelin and cholesterol content and little phosphatidylserine and phosphatidylethanolamine. By contrast, the myristoylated and non-palmitoylated Gαi1 subunit prefers other types of ordered lipid microdomains with higher phosphatidylserine content. These results in part explain the mobility of Gαi1 protein upon reversible palmitoylation to meet one or another type of signaling protein partner. These results also serve as an example of how membrane lipid alterations can change membrane signaling or how membrane lipid therapy can regulate the cell's physiology.


Assuntos
Membrana Celular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Membrana Celular/química , Colesterol/química , Colesterol/metabolismo , Sequência Conservada , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Expressão Gênica , Lipoilação , Microdomínios da Membrana , Dados de Sequência Molecular , Ácidos Mirísticos/química , Ácidos Mirísticos/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Células Sf9 , Transdução de Sinais , Esfingomielinas/química , Esfingomielinas/metabolismo , Spodoptera
15.
J Pharmacol Exp Ther ; 354(2): 213-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26065701

RESUMO

Membrane lipid therapy is a novel approach to rationally design or discover therapeutic molecules that target membrane lipids. This strategy has been used to design synthetic fatty acid analogs that are currently under study in clinical trials for the treatment of cancer. In this context, and with the aim of controlling tumor cell growth, we have designed and synthesized a hydroxylated analog of triolein, hydroxytriolein (HTO). Both triolein and HTO regulate the biophysical properties of model membranes, and they inhibit the growth of non-small-cell lung cancer (NSCLC) cell lines in vitro. The molecular mechanism underlying the antiproliferative effect of HTO involves regulation of the lipid membrane structure, protein kinase C-α and extracellular signal-regulated kinase activation, the production of reactive oxygen species, and autophagy. In vivo studies on a mouse model of NSCLC showed that HTO, but not triolein, impairs tumor growth, which could be associated with the relative resistance of HTO to enzymatic degradation. The data presented explain in part why olive oil (whose main component is the triacylglycerol triolein) is preventive but not therapeutic, and they demonstrate a potent effect of HTO against cancer. HTO shows a good safety profile, it can be administered orally, and it does not induce nontumor cell (fibroblast) death in vitro or side effects in mice, reflecting its specificity for cancer cells. For these reasons, HTO is a good candidate as a drug to combat cancer that acts by regulating lipid structure and function in the cancer cell membrane.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Trioleína/análogos & derivados , Trioleína/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Trioleína/química , Trioleína/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Biochim Biophys Acta ; 1838(6): 1619-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24525074

RESUMO

This review summarizes the cellular bases of the effects of NaCHOleate (2-hydroxyoleic acid; 2OHOA; Minerval) against glioma and other types of tumors. NaCHOleate, activates sphingomyelin synthase (SGMS) increasing the levels of cell membrane sphingomyelin (SM) and diacylglycerol (DAG) together with reductions of phosphatidylethanolamine (PE) and phosphatidylcholine (PC). The increases in the membrane levels of NaCHOleate itself and of DAG induce a translocation and overexpression of protein kinase C (PKC) and subsequent reductions of Cyclin D, cyclin-dependent kinases 4 and 6 (CDKs 4 and 6), hypophosphorylation of the retinoblastoma protein, inhibition of E2F1 and knockdown of dihydrofolate reductase (DHFR) impairing DNA synthesis. In addition in some cancer cells, the increases in SM are associated with Fas receptor (FasR) capping and ligand-free induction of apoptosis. In glioma cell lines, the increases in SM are associated with the inhibition of the Ras/MAPK and PI3K/Akt pathways, in association with p27Kip1 overexpression. Finally, an analysis of the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database for glioma patient survival shows that the weight of SM-related metabolism gene expression in glioma patients' survival is similar to glioma-related genes. Due to its low toxicity and anti-tumoral effect in cell and animal models its status as an orphan drug for glioma treatment by the European Medicines Agency (EMA) was recently acknowledged and a phase 1/2A open label, non-randomized study was started in patients with advanced solid tumors including malignant glioma. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glioma/tratamento farmacológico , Lipídeos de Membrana/química , Ácidos Oleicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Glioma/metabolismo , Glioma/patologia , Humanos , Lipídeos de Membrana/metabolismo
18.
Langmuir ; 30(8): 2117-28, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24490728

RESUMO

Recent research regarding 2-hydroxylated fatty acids (2OHFAs) showed clear evidence of their benefits in the treatment of cancer, inflammation, and neurodegenerative disorders such as Alzheimer's disease. Monolayer compressibility isotherms and isothermal titration calorimetry of 2OHFA (C18-C22) in phosphatidylcholine/phosphatidylethanolamine/sphingomyelin/cholesterol (1:1:1:1 mole ratio), a mixture that mimics the composition of mammalian plasma membrane, were performed to assess the membrane binding capacity of 2OHFAs and their natural, nonhydroxylated counterparts. The results show that 2OHFAs are surface-active substances that bind membranes through exothermic, spontaneous processes. The main effects of 2OHFAs are a decrease in lipid order, with a looser packing of the acyl chains, and a decreased dipole potential, regardless of the 2OHFAs' relative affinity for the lipid bilayer. The strongest effects are usually observed for 2-hydroxyarachidonic (C20:4) acid, and the weakest one, for 2-hydroxydocosahexaenoic acid (C22:6). In addition, 2OHFAs cause increased hydration, except in gel-phase membranes, which can be explained by the 2OHFA preference for membrane defects. Concerning the membrane dipole potential, the magnitude of the reduction induced by 2OHFAs was particularly marked in the liquid-ordered (lo) phase (cholesterol/sphingomyelin-rich) membranes, those where order reduction was the smallest, suggesting a disruption of cholesterol-sphingolipid interactions that are responsible for the large dipole potential in those membranes. Moreover, 2OHFA effects were larger than for both lo and ld phases separately in model membranes with liquid disordered (ld)/lo coexistence when both phases were present in significant amounts, possibly because of the facilitating effect of ld/lo domain interfaces. The specific and marked changes induced by 2OHFAs in several membrane properties suggest that the initial interaction with the membrane and subsequent reorganization might constitute an important step in their mechanisms of action.


Assuntos
Ácidos Graxos Insaturados/química , Bicamadas Lipídicas/química , Modelos Químicos
19.
Biochim Biophys Acta ; 1838(6): 1628-37, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24412218

RESUMO

The complex dual mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent anti-tumor compound used in membrane lipid therapy (MLT), has yet to be fully elucidated. It has been demonstrated that 2OHOA increases the sphingomyelin (SM) cell content via SM synthase (SGMS) activation. Its presence in membranes provokes changes in the membrane lipid structure that induce the translocation of PKC to the membrane and the subsequent overexpression of CDK inhibitor proteins (e.g., p21(Cip1)). In addition, 2OHOA also induces the translocation of Ras to the cytoplasm, provoking the silencing of MAPK and its related pathways. These two differential modes of action are triggered by the interactions of 2OHOA with either lipids or proteins. To investigate the molecular basis of the different interactions of 2OHOA with membrane lipids and proteins, we synthesized the R and S enantiomers of this compound. A molecular dynamics study indicated that both enantiomers interact similarly with lipid bilayers, which was further confirmed by X-ray diffraction studies. By contrast, only the S enantiomer was able to activate SMS in human glioma U118 cells. Moreover, the anti-tumor efficacy of the S enantiomer was greater than that of the R enantiomer, as the former can act through both MLT mechanisms. The present study provides additional information on this novel therapeutic approach and on the magnitude of the therapeutic effects of type-1 and type-2 MLT approaches. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Assuntos
Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Ácidos Oleicos/farmacologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Membrana Celular/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Humanos , Bicamadas Lipídicas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Nus , Modelos Químicos , Simulação de Dinâmica Molecular , Ácidos Oleicos/química , Transdução de Sinais/efeitos dos fármacos , Estereoisomerismo , Células Tumorais Cultivadas , Difração de Raios X
20.
Biochim Biophys Acta ; 1838(6): 1518-28, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24388951

RESUMO

This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Assuntos
Estruturas da Membrana Celular/química , Fenômenos Fisiológicos Celulares , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Microdomínios da Membrana/química , Estruturas da Membrana Celular/metabolismo , Humanos , Microdomínios da Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...