Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 804: 150216, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520930

RESUMO

European harbours are known to contribute to air quality degradation. While most of the literature focuses on emissions from stacks or logistics operations, ship refit and repair activities are also relevant aerosol sources in EU harbour areas. Main activities include abrasive removal of filler and spray painting with antifouling coatings/primers/topcoats. This work aimed to assess ultrafine particle (UFP) emissions from ship maintenance activities and their links with exposure, toxicity and health risks for humans and the aquatic environment. Aerosol emissions were monitored during mechanical abrasion of surface coatings under real-world operating conditions in two scenarios in the Mallorca harbour (Spain). Different types of UFPs were observed: (1) highly regular (triangular, hexagonal) engineered nanoparticles (Ti-, Zr-, Fe-based), embedded as nano-additives in the coatings, and (2) irregular, incidental particles emitted directly or formed during abrasion. Particle number concentrations monitored were in the range of industrial activities such as drilling or welding (up to 5 ∗ 105/cm3, mean diameters <30 nm). The chemical composition of PM4 aerosols was dominated by metallic tracers in the coatings (Ti, Al, Ba, Zn). In vitro toxicity of PM2 aerosols evidenced reduced cell viability and a moderate potential for cytotoxic effects. While best practices (exhaust ventilation, personal protective equipment, dust removal) were in place, it is unlikely that exposures and environmental release can be fully avoided at all times. Thus, it is advisable that health and safety protocols should be comprehensive to minimise exposures in all types of locations (near- and far-field) and periods (activity and non-activity). Potential release to coastal surface waters of metallic engineered and incidental nanomaterials, as well as fine and coarse particles (in the case of settled dust), should be assessed and avoided.


Assuntos
Monitoramento Ambiental , Soldagem , Aerossóis/análise , Humanos , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade
2.
Sci Total Environ ; 671: 474-487, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30933802

RESUMO

Packing of raw materials in work environments is a known source of potential health impacts (respiratory, cardiovascular) due to exposure to airborne particles. This activity was selected to test different exposure and risk assessment tools, aiming to understand the effectiveness of source enclosure as a strategy to mitigate particle release. Worker exposure to particle mass and number concentrations was monitored during packing of 7 ceramic materials in 3 packing lines in different settings, with low (L), medium (M) and high (H) degrees of source enclosure. Results showed that packing lines L and M significantly increased exposure concentrations (119-609 µg m-3 respirable, 1150-4705 µg m-3 inhalable, 24,755-51,645 cm-3 particle number), while non-significant increases were detected in line H. These results evidence the effectiveness of source enclosure as a mitigation strategy, in the case of packing of ceramic materials. Total deposited particle surface area during packing ranged between 5.4 and 11.8 × 105 µm2 min-1, with particles depositing mainly in the alveoli (51-64%) followed by head airways (27-41%) and trachea bronchi (7-10%). The comparison between the results from different risk assessment tools (Stoffenmanager, ART, NanoSafer) and the actual measured exposure concentrations evidenced that all of the tools overestimated exposure concentrations, by factors of 1.5-8. Further research is necessary to bridge the current gap between measured and modelled health risk assessments.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental , Exposição por Inalação/análise , Exposição Ocupacional/análise , Embalagem de Produtos , Monitoramento Ambiental/métodos , Humanos , Modelos Teóricos , Medição de Risco , Local de Trabalho
3.
Sci Total Environ ; 599-600: 2065-2073, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28558429

RESUMO

Atmospheric plasma spraying (APS) is a frequently used technique to produce enhanced-property coatings for different materials in the ceramic industry. This work aimed to characterise and quantify the impact of APS on workplace exposure to airborne particles, with a focus on ultrafine particles (UFPs, <100nm) and nanoparticles (<50nm). Particle number, mass concentrations, alveolar lung deposited surface area concentration, and size distributions, in the range 10nm-20µm were simultaneously monitored at the emission source, in the potential worker breathing zone, and in outdoor air. Different input materials (known as feedstock) were tested: (a) micron-sized powders, and (b) suspensions containing submicron- or nano-sized particles. Results evidenced significantly high UFP concentrations (up to 3.3×106/cm3) inside the spraying chamber, which impacted exposure concentrations in the worker area outside the spraying chamber (up to 8.3×105/cm3). Environmental release of UFPs was also detected (3.9×105/cm3, outside the exhaust tube). Engineered nanoparticle (ENP) release to workplace air was also evidenced by TEM microscopy. UFP emissions were detected during the application of both micron-sized powder and suspensions containing submicron- or nano-sized particles, thus suggesting that emissions were process- (and not material-) dependent. An effective risk prevention protocol was implemented, which resulted in a reduction of UFP exposure in the worker area. These findings demonstrate the potential risk of occupational exposure to UFPs during atmospheric plasma spraying, and raise the need for further research on UFP formation mechanisms in high-energy industrial processes.

4.
J Occup Environ Hyg ; 13(11): 817-28, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27135749

RESUMO

The classification of Respirable Crystalline Silica (RCS) as carcinogenic for humans has drawn greater attention to crystalline silica exposure in the workplace in recent years, leading to recommendations by safety and health bodies in Europe and the U.S. for lower occupational exposure limits. In view of this new scenario, the present study examined quartz dustiness, as quartz handling is a major source of crystalline silica in the workplace. The study was conducted on test samples with different mean particle sizes, prepared from several commercial quartzes. The quartz particle samples were characterised and the influence of certain quartz particle parameters on quartz dustiness was determined. The results indicate that quartz dustiness may be significantly affected by mean particle size, specific surface area, the Hausner ratio, and fine particle content. The study shows that, in order to minimise the adverse health effects associated with the inhalation of crystalline silica, quartz dustiness may be deemed a key factor in controlling the generation of fugitive quartz emissions during quartz processing, both into the outside atmosphere (air pollution) and inside the facilities (occupational health).


Assuntos
Exposição por Inalação/análise , Exposição Ocupacional/análise , Quartzo/análise , Dióxido de Silício/análise , Poeira/análise , Humanos , Exposição por Inalação/prevenção & controle , Exposição Ocupacional/prevenção & controle , Tamanho da Partícula , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...