Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 29(44): 5911-22, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-20802526

RESUMO

Fine tuning of Ras activity is widely known as a mechanism to induce different cellular responses. Recently, we have shown that calmodulin (CaM) binds to K-Ras and that K-Ras phosphorylation inhibits its interaction with CaM. In this study we report that CaM inhibits K-Ras phosphorylation at Ser181 by protein kinase C (PKC) in vivo, and this is a mechanism to modulate K-Ras activity and signaling. Although CaM inhibition increased the activation of endogenous K-Ras, PKC inhibition decreased its activation status. We demonstrate that K-Ras phosphorylation decreased susceptibility to p120GAP activity. Accordingly, we also observed that non-phosphorylable K-Ras mutant exhibits a less sustained activation profile and do not efficiently activate AKT at low growth factor doses compared with wild-type K-Ras. It is interesting that the physiological responses induced by K-Ras are affected by this phosphorylation; when K-Ras cannot be phosphorylated it exhibits a remarkably decreased ability to stimulate proliferation in non-saturated serum conditions. Finally, we demonstrate that phosphorylation also regulates oncogenic K-Ras functions, as focus formation capacity, mobility and apoptosis resistance upon adriamycin treatment of cells expressing oncogenic K-Ras that cannot be phosphorylated are highly compromised. Moreover, at low serum concentration proliferation and survival is practically inhibited when cells cannot phosphorylate oncogenic K-Ras. In this condition, K-Ras phosphorylation is essential to ensure a proper activation of mitogen-activated protein kinase and PI3K/AKT pathways. In summary, our findings suggest that the interplay between CaM interaction and PKC phosphorylation is essential to regulate non-oncogenic and oncogenic K-Ras activity and functionality.


Assuntos
Calmodulina/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Animais , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/química , Acetato de Tetradecanoilforbol/farmacologia
2.
Mol Cell Biol ; 21(21): 7345-54, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11585916

RESUMO

Activation of Ras induces a variety of cellular responses depending on the specific effector activated and the intensity and amplitude of this activation. We have previously shown that calmodulin is an essential molecule in the down-regulation of the Ras/Raf/MEK/extracellularly regulated kinase (ERK) pathway in cultured fibroblasts and that this is due at least in part to an inhibitory effect of calmodulin on Ras activation. Here we show that inhibition of calmodulin synergizes with diverse stimuli (epidermal growth factor, platelet-derived growth factor, bombesin, or fetal bovine serum) to induce ERK activation. Moreover, even in the absence of any added stimuli, activation of Ras by calmodulin inhibition was observed. To identify the calmodulin-binding protein involved in this process, calmodulin affinity chromatography was performed. We show that Ras and Raf from cellular lysates were able to bind to calmodulin. Furthermore, Ras binding to calmodulin was favored in lysates with large amounts of GTP-bound Ras, and it was Raf independent. Interestingly, only one of the Ras isoforms, K-RasB, was able to bind to calmodulin. Furthermore, calmodulin inhibition preferentially activated K-Ras. Interaction between calmodulin and K-RasB is direct and is inhibited by the calmodulin kinase II calmodulin-binding domain. Thus, GTP-bound K-RasB is a calmodulin-binding protein, and we suggest that this binding may be a key element in the modulation of Ras signaling.


Assuntos
Calmodulina/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Células 3T3 , Animais , Bombesina/metabolismo , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Fator de Crescimento Epidérmico/metabolismo , Regulação Enzimológica da Expressão Gênica , Genes ras/genética , Humanos , Immunoblotting , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Testes de Precipitina , Ligação Proteica , Isoformas de Proteínas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas ras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...