Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 939: 173501, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38797398

RESUMO

Biochars and organoclays have been proposed as efficient adsorbents to reduce the mobility of agrochemicals in soils. However, following their application to soils, these adsorbents undergo changes in their physicochemical properties over time due to their interaction with soil components. In this study, the adsorption capacity of a commercial biochar and a commercial organoclay for the antibiotic sulfamethoxazole (SFMX) and the pesticide ethofumesate (ETFM) was evaluated over aging periods of 3 months in the laboratory and 1 year in the field, subsequent to their application to a Mediterranean soil. The results showed that the adsorption of SFMX and ETFM in the soil amended with the adsorbents was greater than in the unamended soil, but for both chemicals, adsorption decreased with aging of the adsorbents in the soil. Characterization of the adsorbents before and after aging revealed physical blocking of adsorption sites by soil components. The loss of adsorption capacity of the adsorbents upon aging led to higher leaching of SFMX and ETFM in the soil containing field-aged adsorbents, although leaching remained lower than in unamended soil. Our findings reveal that, under the Mediterranean environment studied, the efficacy of the studied materials as adsorbents is maintained to a considerable extent for at least one year after their field application, which would have positive implications in their use for attenuating the dispersion of agricultural contaminants in the environment.


Assuntos
Carvão Vegetal , Poluentes do Solo , Solo , Sulfametoxazol , Sulfametoxazol/química , Carvão Vegetal/química , Adsorção , Poluentes do Solo/análise , Poluentes do Solo/química , Solo/química , Argila/química
2.
Pest Manag Sci ; 80(4): 2199-2207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258969

RESUMO

BACKGROUND: Biofungicides arise as a promising alternative to the indiscriminate use of harmful synthetic fungicides in crop management. RESULTS: The present study reports the bio-guided fractionation of an endemic plant from the Canary Islands, Salvia canariensis against the phytopathogens, Alternaria alternata, Botrytis cinerea, and Fusarium oxysporum. This procedure allowed identifying a series of diterpenoids with an abietane skeleton (1-5), which exhibited remarkable activity against the phytopathogenic fungi assayed. Their structures were established by means of spectroscopic and spectrometric methods, as well as comparison with reported data. Compounds 2 (carnosic acid), 4 (11-acetoxy carnosic acid) and 5 (11,12-diacetoxy carnosic acid) showed significant mycelium growth inhibition (%GI > 50 at 0.1 mg/mL concentration) on all the assayed fungi, and with a potency also higher than the positive control, Fosbel-Plus, a fungicide commonly used in agriculture. A preliminary structure-activity relationship is also discussed. CONCLUSIONS: These findings underline the aromatic abietane diterpenoids as promising eco-friendly alternatives to conventional fungicides to use in integrated pest management. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Salvia , Abietanos/farmacologia , Abietanos/química , Fungicidas Industriais/farmacologia , Salvia/química , Agentes de Controle Biológico , Fungos
3.
Ecotoxicol Environ Saf ; 270: 115870, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159340

RESUMO

Chiral pesticides that are still commercialized and incorporated into the environment as racemic mixtures of enantiomers require evaluation of the enantioselectivity of their biological activity and environmental fate processes for a better prediction of their field efficacy and environmental risks. In this work, we successfully separated the enantiomers of the chiral herbicide ethofumesate (ETFM), determined their absolute configuration, and characterized their herbicidal activity as well as their adsorption, degradation, enantiomerization, and leaching in Mediterranean agricultural soils. While the herbicidal activity of R-ethofumesate to the sensitive species Portulaca grandiflora was greater than that of S-ethofumesate, the adsorption, degradation, and leaching of the herbicide showed negligible enantioselectivity and enantiomer interconversion did not occur in soils. The adsorption of both enantiomers showed a positive correlation with the soil organic carbon content (r = 0.856, P = 0.015), and their degradation in soils occurred slowly (DT50 > 60 days) and at similar rates independent of their application as individual enantiomers or as a racemic mixture of enantiomers. The addition of three highly adsorptive materials to a scarcely adsorptive soil increased the adsorption of the enantiomers of ETFM and delayed their degradation without affecting the non-enantioselective character of the processes. As a result of their high adsorption capacity, the materials were highly effective in reducing the leaching of both enantiomers of ETFM through soil columns. The results of this work indicate that the application of single-enantiomer ETFM formulations, based on a higher herbicidal activity or a lower toxicity to non-target organisms of the formulated enantiomer, would reduce considerable exposure risks associated with incorporating into the environment the less favorable enantiomer, as this would show long persistence and high leaching potential in soils similar to its optical isomer.


Assuntos
Benzofuranos , Carvão Vegetal , Fungicidas Industriais , Herbicidas , Mesilatos , Poluentes do Solo , Solo , Estereoisomerismo , Carbono , Fungicidas Industriais/metabolismo , Poluentes do Solo/metabolismo , Alanina/metabolismo , Biodegradação Ambiental
4.
Plants (Basel) ; 11(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36365441

RESUMO

Phytopathogens are responsible for great losses in agriculture. In particular, Fusarium, Alternaria and Botrytis are fungal diseases that affect crops worldwide. In the search for eco-friendly solutions to pest control, plants and their chemo-biodiversity are promising sources of biopesticides for integrated pest management. The aim of the present study is to report the evaluation of sixteen plant species from the Canary Islands Archipelago against the phytopathogenic fungi Botrytis cinerea, Fusarium oxysporum, and Alternaria alternata. The plants were selected on the basis of their traditional uses in medicine and/or pest control, as well as on scientific studies reporting their uses in crop protection. Their growth inhibition (% I), in an in vitro test-assay on mycelium, was used to identify six ethanolic plant extracts displaying activity (% I > 30% at 1 mg/mL) against at least one of the assayed fungi. The most effective plant extracts were further fractionated by liquid−liquid partition, using solvents of increasing polarity. This procedure led to an improvement of the bioactivity against the phytopathogens, even affecting the hexane fraction from S. canariensis and achieving an 83.93% of growth inhibition at 0.5 mg/mL on B. cinerea. These findings identified five plant-derived extracts as potential candidates for the future development of new biofungicides, which could be applied in integrated pest management.

5.
Sci Total Environ ; 764: 142921, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33757243

RESUMO

Coastal areas are final recipients of various contaminants including pesticides. The effects of pesticides on non-target organisms are often unclear, especially at environmentally relevant concentrations. This study investigated the impacts of insecticide imidacloprid (IMI) and fungicide propiconazole (PRO), some of the most detected pesticides in the Arcachon Bay in France. This work also included the research of propiconazole nanoformulation (nanoPRO). The effects were assessed studying the development of the early life stages of the Pacific oyster (Magallana gigas). Oyster embryos were exposed for 24, 30, and 42 h (depending on the endpoint) at 24 °C to environmentally relevant concentrations of the two pesticides as well as to nanoPRO. The research focused on sublethal endpoints such as the presence of developmental malformations, alterations of locomotion patterns, or changes in the gene expression levels. No developmental abnormalities were observed after exposure to environmental concentrations detected in the Arcachon Bay in recent years (maximal detected concentration of IMI and PRO were 174 ng/L and 29 ng/L, respectively). EC50 of PRO and nanoPRO were comparable, 2.93 ±â€¯1.35 and 2.26 ±â€¯1.36 mg/L, while EC50 of IMI exceeded 200 mg/L. IMI did not affect larval behavior. PRO affected larval movement trajectory and decreased average larvae swimming speed (2 µg/L), while nanoPRO increased the maximal larvae swimming speed (0.02 µg/L). PRO upregulated especially genes linked to reactive oxygen species (ROS) production and detoxification. NanoPRO effects on gene expression were less pronounced - half of the genes were altered in comparison with PRO. IMI induced a strong dose-response impact on the genes linked to the detoxification, ROS production, cell cycle, and apoptosis regulation. In conclusion, our results suggest that current pesticide concentrations detected in the Arcachon Bay are safe for the Pacific oyster early development, but they might have a small direct effect via altered gene expressions, whose longer-term impacts cannot be ruled out.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Biomarcadores , França , Expressão Gênica , Larva , Neonicotinoides , Nitrocompostos , Triazóis , Poluentes Químicos da Água/toxicidade
6.
Nanoscale ; 13(10): 5410-5418, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33666640

RESUMO

Loading active ingredients on nanocarrier systems is becoming a common strategy for improving pesticide formulations. One of the most important properties of these nanoformulations is the proportion of pesticide associated with the nanocarriers (encapsulation efficiency, EE). EE is often determined by centrifugal ultrafiltration. However, the losses of active ingredient in the centrifugal ultrafiltration devices are typically not assessed, potentially leading to erroneous results. In this work, the losses of three pesticides (tebuconazole, terbuthylazine and chlorpyrifos) during centrifugal ultrafiltration have been systematically evaluated for nine different devices. Results suggest that centrifugal ultrafiltration is not suitable for determining the EE of compounds such as chlorpyrifos as 100% losses were observed on all the devices tested. Losses of tebuconazole and terbuthylazine were highly variable according to the type of membrane and the lowest losses were observed in the devices with hydrophilic regenerated cellulose membranes. Based on these results, we propose a correction factor and demonstrate its application to calculate the EE of two nanoformulations based on poly(ε-caprolactone) nanocarriers. The approach extends the applicability of centrifugal ultrafiltration to a wider range of pesticide nanoformulations. We also discuss the effect of dilution on EE and make recommendations to improve the characterisation of nanoparticles-based pesticide nanoformulations in the future.

7.
Pest Manag Sci ; 77(2): 834-843, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32926587

RESUMO

BACKGROUND: Allelochemicals can act as biopesticides or enhance the action of synthetic pesticides. In this work, we assessed the bioavailability of the allelochemical coumarin in soils amended with fresh or field-aged biochars (BCs). The fresh BC from oak wood (Fresh BC) was prepared at 550 °C and was buried for aging in two different places: in a sandy loam soil in Spain for 15 months (Aged BC_1) and a sandy loam soil in USA for six months (Aged BC_2). RESULTS: Sorption experiments showed that all BCs were able to increase the affinity of soil towards coumarin, with the distribution coefficient following the order: unamended soil < Aged BC_2-amended soil < Aged BC_1-amended soil < Fresh BC-amended soil. All biochars ensure greater persistence of coumarin and the effect was more pronounced at high chemical dose (10 mg kg-1 ). Conversely, leaching studies in soil columns revealed that BCs were able to maintain coumarin within the first 5 cm of top-soil with total amount extracted ranging between 17% and 22% for BC-amended soil and <1% for unamended soil. Leaching was only observed when coumarin was added at the highest rate. Likewise, the bioefficacy of coumarin against lettuce was enhanced only at 10 kg ha-1 with BC-amended soil. CONCLUSIONS: Biochar application to agricultural soils is a promising tool for the management of natural compounds with potential use as biopesticides, such as coumarin, because it increases sorption, persistence and, in some cases, bioefficacy. The results reveal that this effect still persists with aging of BC in soils.


Assuntos
Poluentes do Solo , Solo , Adsorção , Disponibilidade Biológica , Carvão Vegetal , Cumarínicos , Feromônios , Poluentes do Solo/análise , Espanha
8.
Sci Rep ; 9(1): 9764, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278287

RESUMO

Coumarins represent an important family of allelochemicals with fungicidal, bactericidal, insecticidal, nematicidal, and herbicidal properties. Like for other allelochemicals, the short persistence of coumarins in soils can reduce their biological activity and hamper their application as environmentally friendly agrochemicals. We evaluated the sorption of the coumarin umbelliferone by eight soils and six sorbent materials, and then selected two nanoengineered sorbents, hexadecyltrimethylammonium-modified Arizona montmorillonite (SA-HDTMA) and olive-mill waste biochar (BC), to assess the effect of their addition to two distinct soils on umbelliferone sorption, persistence, and leaching. Umbelliferone was sorbed to a greater extent by the acid soils (A1-A2, Kd > 4.0 L kg-1) than by the alkaline soils (B1-B6, Kd < 0.5 L kg-1). The addition of BC and SA-HDTMA at a rate of 4% to alkaline soil (B2) increased the umbelliferone sorption Kd value from 0.3 to 1.6-2.0 L kg-1, whereas their addition to acid soil (A1) increased the Kd value from 4.6 to 12.2-19.0 L kg-1. Incubation experiments showed that BC had more impact than SA-HDTMA on the persistence of umbelliferone in the soils, increasing its half-life from 0.3-2.5 to 1.2-14.4 days, depending on the soil. Furthermore, the addition of BC to the top 0-5 cm of soil columns reduced leaching of umbelliferone and led to accumulation of umbelliferone residues in the top 0-5 cm soil layer. The addition of nanoengineered materials, such as organoclays and biochars, could thus be a suitable strategy to increase the persistence and reduce the mobility of coumarins in the rhizosphere with the aim of prolonging their biological activity.

9.
Environ Sci Technol ; 53(10): 5725-5732, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31017764

RESUMO

Many pesticides show a pronounced biphasic degradation in soil, typically with a faster initial phase, followed by a slower decline. For chiral compounds, a biphasic decline of the total concentration may result from enantioselective degradation. In this study with the chiral herbicide imazamox, biphasic degradation was observed in most of the 18 soils investigated. In neutral soils, degradation was, in fact, enantioselective with faster degradation of (+)-imazamox. In slightly acidic soils, differences between enantiomers were not pronounced, and in strongly acidic soils, degradation was again enantioselective, but with reversed preference. Additional experiments with pure enantiomers indicated no interconversion. Enantioselective degradation thus contributed to the biphasic decline of the total concentration in certain soils. However, this was not the only factor since degradation of the individual enantiomers was biphasic in itself. In addition to the observed correlation between enantioselectivity and pH, degradation was generally faster in neutral than in acidic soils with half-lives ranging from only 2 to >120 days. Half-lives were also determined for two known metabolites and a further chiral metabolite, the structure of which was characterized by high resolution tandem mass spectrometry. As for the parent compound, half-lives of the metabolites varied considerably in the different soils.


Assuntos
Herbicidas , Poluentes do Solo , Concentração de Íons de Hidrogênio , Imidazóis , Solo , Estereoisomerismo
10.
Pest Manag Sci ; 75(7): 1894-1901, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30537433

RESUMO

BACKGROUND: Imazaquin is a chiral herbicide which displays high mobility in soils. Like other imidazolinones, imazaquin is available for use only as racemic mixture of its enantiomers. In this work, several clay materials were assayed as adsorbents of imazaquin, and then the most suitable material was selected to prepare a clay-based slow release imazaquin nanoformulation containing exclusively the biologically active R-enantiomer. Next, laboratory experiments were conducted to illustrate the benefits of using the clay-based R-imazaquin formulation over the free (non-supported) racemic herbicide or the free pure R-imazaquin enantiomer regarding its leaching behavior and bioefficacy. RESULTS: The clay material selected as a carrier for R-imazaquin, hexadecyltrimethylammonium-saturated montmorillonite (SA-HDTMA), combined a high affinity for the herbicide and a high stability of the clay-herbicide adsorption complex. In a simulated scenario of high water input shortly after herbicide application, the clay-based R-imazaquin formulation displayed reduced leaching and increased bioefficacy compared to free racemic imazaquin and free R-imazaquin. CONCLUSION: The new clay-R-imazaquin formulation prepared, besides avoiding the environmental impact caused by the application of the less active S-enantiomer, reduced the herbicide leaching losses and prolonged the herbicidal activity, by increasing the residence time of the herbicide in the topsoil. © 2018 Society of Chemical Industry.


Assuntos
Bentonita/química , Herbicidas/química , Imidazóis/química , Quinolinas/química , Brassica/efeitos dos fármacos , Argila/química , Compostos de Amônio Quaternário/química , Solo/química , Estereoisomerismo , Água/química
11.
J Agric Food Chem ; 64(26): 5301-9, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27248479

RESUMO

Metabolism of chiral pesticides in crops is typically studied using achiral analytical methods and, consequently, the stereoisomer composition of residues is unknown. In this study, we developed an enantioselective GC-MS/MS method to quantify residues of the fungicides fenpropidin, fenpropimorph, and spiroxamine in plant matrices. In field trials, the fungicides were applied to grapevines, sugar beets, or wheat. Fenpropidin was metabolized with no or only weak enantioselectivity. For fenpropimorph, slightly enantioselective metabolism was observed in wheat but more pronounced in sugar beets. This enantioselectivity was due to different rates of metabolism and not due to interconversion of enantiomers. The four stereoisomers of spiroxamine were also metabolized at different rates, but selectivity was only found between diastereomers and not between enantiomers. trans-Spiroxamine was preferentially degraded in grapes and cis-spiroxamine in wheat. These findings may affect the consumer dietary risk assessment because toxicological end points were determined using racemic test substances.


Assuntos
Beta vulgaris/metabolismo , Praguicidas/metabolismo , Compostos de Espiro/metabolismo , Esteróis/biossíntese , Triticum/metabolismo , Vitis/metabolismo , Beta vulgaris/química , Cromatografia Gasosa-Espectrometria de Massas , Praguicidas/química , Compostos de Espiro/química , Estereoisomerismo , Espectrometria de Massas em Tandem , Triticum/química , Vitis/química
12.
J Environ Manage ; 181: 135-145, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27341374

RESUMO

Many pollutants released into the environment as a result of human activities are chiral. Pollution control strategies generally consider chiral compounds as if they were achiral and rarely consider enantiomers separately. We compared the performance of three different materials, an organically-modified anionic clay (HT-ELA) and two organic agro-food residues (ALP and ALPc), as amendments to immobilize the chiral fungicide metalaxyl in two soils with different textures, addressing the effects of the amendments on the sorption, persistence, and leaching of each of the two enantiomers of metalaxyl (R-metalaxyl and S-metalaxyl) separately. The effects of the amendments were both soil- and amendment-dependent, as well as enantiomer-selective. The organo-clay (HT-ELA) was much more efficient in increasing the sorption capacity of the soils for the two enantiomers of metalaxyl than the agro-food residues (ALP and ALPc), even when applied at a reduced application rate. The enhanced sorption in HT-ELA-amended soils reduced the bioavailability of metalaxyl enantiomers and their leaching in the soils, mitigating the particularly high leaching potential of the more persistent S enantiomer. The immobilizing capacity of the agro-food residues was more variable, mainly because their addition did not greatly ameliorate the sorption capacity of the soils and had variable effects on the enantiomers degradation rates. HT-ELA showed potential to reduce the bioavailability and mobility of metalaxyl enantiomers in soil and to mitigate the contamination problems particularly associated with the higher leaching potential of the more persistent enantiomer.


Assuntos
Alanina/análogos & derivados , Recuperação e Remediação Ambiental/métodos , Fungicidas Industriais/química , Hidróxidos/química , Poluentes do Solo/química , Solo/química , Alanina/análise , Alanina/química , Silicatos de Alumínio/química , Argila , Fungicidas Industriais/análise , Humanos , Poluentes do Solo/análise , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...