Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(12): 244, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957405

RESUMO

KEY MESSAGE: Association mapping conducted in 189 Spanish bread wheat landraces revealed six key genomic regions that constitute stable QTLs for yield and include 15 candidate genes. Genetically diverse landraces provide an ideal population to conduct association analysis. In this study, association mapping was conducted in a collection of 189 Spanish bread wheat landraces whose genomic diversity had been previously assessed. These genomic data were combined with characterization for yield-related traits, including grain size and shape, and phenological traits screened across five seasons. The association analysis revealed a total of 881 significant marker trait associations, involving 434 markers across the genome, that could be grouped in 366 QTLs based on linkage disequilibrium. After accounting for days to heading, we defined 33 high density QTL genomic regions associated to at least four traits. Considering the importance of detecting stable QTLs, 6 regions associated to several grain traits and thousand kernel weight in at least three environments were selected as the most promising ones to harbour targets for breeding. To dissect the genetic cause of the observed associations, we studied the function and in silico expression of the 413 genes located inside these six regions. This identified 15 candidate genes that provide a starting point for future analysis aimed at the identification and validation of wheat yield related genes.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Mapeamento Cromossômico , Triticum/genética , Pão , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Genômica
2.
Plants (Basel) ; 10(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805170

RESUMO

Modern plant-breeding practices have narrowed the genetic base of wheat, such that there is a need to introduce new germplasms with underexploited diversity into breeding programs. Wheat landraces are a very valuable resource when searching for genetic variation, which not only possess increased adaptability, but also quality-related traits. Several studies have shown a wide genetic diversity in Spanish wheat landraces compared to other germplasm collections; therefore, the main objective of this study is to analyze the variability in a collection of 189 landraces from the Spanish National Plant Genetic Resources Centre (Centro de Recursos Fitogenéticos, CRF-INIA, Alcalá de Henares), in relation to end-use quality traits. We characterized the whole collection for high-molecular-weight glutenin and puroindoline allelic composition, and for gluten strength. In addition, grain protein content, grains per spike, and thousand kernel weight were evaluated in samples from four-year field trials. The relationship between glutenin composition and quality was evaluated, and some alleles strongly associated with high quality were identified in the collection, some of them specific for Iberian landraces. The results also show the presence of novel variability within high-molecular-weight glutenin and puroindolines, which needs to be characterized further in order to assess its influence on wheat quality. In addition, a set of landraces showing outstanding values for gluten quality and a good agronomic performance was selected for testing in field trials in order to evaluate the suitability of their direct use in cropping systems.

3.
Plants (Basel) ; 10(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916820

RESUMO

In the context of a general genetics course, mathematical descriptions of Mendelian inheritance and population genetics are sometimes discouraging and students often have serious misconceptions. Innovative strategies in expositive classes can clearly encourage student's motivation and participation, but laboratories and practical classes are generally the students' favourite academic activities. The design of lab practices focused on learning abstract concepts such as genetic interaction, genetic linkage, genetic recombination, gene mapping, or molecular markers is a complex task that requires suitable segregant materials. The optimal population for pedagogical purposes is an F2 population, which is extremely useful not only in explaining different key concepts of genetics (as dominance, epistasis, and linkage) but also in introducing additional curricular tools, particularly concerning statistical analysis. Among various model organisms available, barley possesses several unique features for demonstrating genetic principles. Therefore, we generated a barley F2 population from the parental lines of the Oregon Wolfe Barley collection. The objective of this work is to present this F2 population as a model to teach Mendelian genetics in a medium-high-level genetics course. We provide an exhaustive phenotypic and genotypic description of this plant material that, together with a description of the specific methodologies and practical exercises, can be helpful for transferring our fruitful experience to anyone interested in implementing this educational resource in his/her teaching.

4.
BMC Genomics ; 21(1): 122, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019507

RESUMO

BACKGROUND: One of the main goals of the plant breeding in the twenty-first century is the development of crop cultivars that can maintain current yields in unfavorable environments. Landraces that have been grown under varying local conditions include genetic diversity that will be essential to achieve this objective. The Center of Plant Genetic Resources of the Spanish Institute for Agriculture Research maintains a broad collection of wheat landraces. These accessions, which are locally adapted to diverse eco-climatic conditions, represent highly valuable materials for breeding. However, their efficient use requires an exhaustive genetic characterization. The overall aim of this study was to assess the diversity and population structure of a selected set of 380 Spanish landraces and 52 reference varieties of bread and durum wheat by high-throughput genotyping. RESULTS: The DArTseq GBS approach generated 10 K SNPs and 40 K high-quality DArT markers, which were located against the currently available bread and durum wheat reference genomes. The markers with known locations were distributed across all chromosomes with relatively well-balanced genome-wide coverage. The genetic analysis showed that the Spanish wheat landraces were clustered in different groups, thus representing genetic pools providing a range of allelic variation. The subspecies had a major impact on the population structure of the durum wheat landraces, with three distinct clusters that corresponded to subsp. durum, turgidum and dicoccon being identified. The population structure of bread wheat landraces was mainly biased by geographic origin. CONCLUSIONS: The results showed broader genetic diversity in the landraces compared to a reference set that included commercial varieties, and higher divergence between the landraces and the reference set in durum wheat than in bread wheat. The analyses revealed genomic regions whose patterns of variation were markedly different in the landraces and reference varieties, indicating loci that have been under selection during crop improvement, which could help to target breeding efforts. The results obtained from this work will provide a basis for future genome-wide association studies.


Assuntos
Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética , Alelos , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Desequilíbrio de Ligação/genética , Melhoramento Vegetal/métodos , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...