Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 870: 161905, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36736387

RESUMO

Designing sustainable management strategies in groundwater-dependent socio-economic systems in areas with scarce water resources and protected wetlands is a challenging issue. The high vulnerability of these systems to droughts will be exacerbated even further under future climate change (CC) and socio-economic scenarios. A novel integrated bottom-up/top-down approach is used to identify "climate resilient pathways", from which to co-design adaptation strategies to reduce the impact of potential future CC and socio-economic scenarios. The approach followed two steps (1) the generation of local CC and socio-economic scenarios by downscaling global/regional climate models and (2) the identification and assessment of potential adaptation strategies through an iterative bottom-up/top-down approach. Top-down assessments of the impact of CC have been undertaken by propagating local scenarios within a chain of mathematical models based on expert criteria/assumptions. This allowed us to analyse of the physical vulnerability of the system under different potential CC and socio-economic scenarios by simulating them with a sequential modelling of rainfall-recharge, agriculture, and hydrological processes through a distributed groundwater finite difference model. These model results were discussed with the stakeholders at a first workshop, which aimed to identify potential adaptation strategies. The influence of the adaptation strategies on the future hydrological status was assessed by simulating them through the chain of models. These results were the inputs into the discussions at a second workshop, which aimed to validate and/or improve the results of the first workshop. The methodology was applied in the Upper Guadiana River Basin, where there is a long-standing conflict between wetland conservation and groundwater overexploitation for intensive agriculture. The future horizon 2016-2045 is analysed with the scenarios compatible with the emission scenario RCP4.5. The research has allowed us to conclude that groundwater pumping reduction would be the most robust and effective measure to reduce the impact of CC in the area.

2.
Environ Res ; 159: 24-38, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28763731

RESUMO

This paper proposes a conceptual framework to systematize the use of Nature-based solutions (NBS) by integrating their resilience potential into Natural Assurance Scheme (NAS), focusing on insurance value as corner stone for both awareness-raising and valuation. As such one of its core goal is to align research and pilot projects with infrastructure development constraints and priorities. Under NAS, the integrated contribution of natural infrastructure to Disaster Risk Reduction is valued in the context of an identified growing need for climate robust infrastructure. The potential of NAS benefits and trade-off are explored by through the alternative lens of Disaster Resilience Enhancement (DRE). Such a system requires a joint effort of specific knowledge transfer from research groups and stakeholders to potential future NAS developers and investors. We therefore match the knowledge gaps with operational stages of the development of NAS from a project designer perspective. We start by highlighting the key role of the insurance industry in incentivizing and assessing disaster and slow onset resilience enhancement strategies. In parallel we place the public sector as potential kick-starters in DRE initiatives through the existing initiatives and constraints of infrastructure procurement. Under this perspective the paper explores the required alignment of Integrated Water resources planning and Public investment systems. Ultimately this will provide the possibility for both planners and investors to design no regret NBS and mixed Grey-Green infrastructures systems. As resources and constraints are widely different between infrastructure development contexts, the framework does not provide explicit methodological choices but presents current limits of knowledge and know-how. In conclusion the paper underlines the potential of NAS to ease the infrastructure gap in water globally by stressing the advantages of investment in the protection, enhancement and restoration of natural capital as an effective climate change adaptation investment.


Assuntos
Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Desenvolvimento Econômico , Mudança Climática , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...