Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Immunol ; 135: 398-407, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022515

RESUMO

It's been almost a century since immunologists started using adjuvants as tools to develop more effective vaccines. Despite the rising number of adjuvanted vaccines in the last decades, we still lack knowledge of the adjuvants' effects on antibody response. This study was aimed to test the effect of immunizing mice with the human Inactivated Influenza vaccine (IIV), either alone or combined with different widely used adjuvants on the specific antibody response induced. Differential levels of IgM and IgG subclasses were found with the different adjuvants tested. Higher levels of antibodies did not always correspond with a higher efficacy to interfere with the virus infectivity. Differences in neutralization properties are possibly mediated by the specificity of the repertoire of antibodies induced. The repertoire was studied using a phage display 7-mer peptide library to screen for epitopes/mimotopes recognized by serum pools from vaccinated mice. The selected phage clones included peptides that corresponded to conformational mimotopes since they have no homology with lineal sequences of the Influenza strains' proteins. Five peptides were identified as recognized by sera from mice immunized with the IIV vaccine alone, including peptides from the hemagglutinin stalk domain, and by sera from mice immunized with the vaccine plus the different adjuvants employed. Adjuvants elicited a more diverse repertoire of epitope-recognizing antibodies that recognized epitopes of the HA recombinant globular head. Mimotopes were theoretically located at the neutralizing antigenic sites of the globular head of Influenza A H1N1pdm09, Influenza A H3N2, and Influenza B hemagglutinin. This study illustrates how different adjuvants can modify the extent and quality of humoral immunity against the IIV vaccine and the effectiveness of vaccination.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Influenza/imunologia , Potência de Vacina , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Biologia Computacional , Epitopos/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Biblioteca de Peptídeos , Vacinação
2.
Front Plant Sci ; 12: 641420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054890

RESUMO

This year, a respiratory virus caused an emergency pandemic alert in health services around the world, showing the need for biotechnological approaches to fight these diseases. The influenza virus is one of the main viral agents that generate pandemic outbreaks. Currently, the majority of co-circulating influenza A virus (IAV) strains are adamantine- and oseltamivir-resistant strains, and the challenge is to find new antivirals for more efficient treatments. The antiviral entry blocker (EB) peptide is a promising candidate for blocking the virus entry into cells. The aim of this research was to express the EB peptide in the microalgae Chlamydomonas reinhardtii and test its antiviral activity against IAV in vitro. The EB peptide nucleotide sequence was introduced into the nuclear genome of microalgae using Agrobacterium tumefaciens transformation. The EB peptide amount produced in transformed microalgae was 4.99 ± 0.067% of the total soluble protein. In hemagglutination inhibition assays using influenza A/H1N1 pdm and influenza A H1N1/Virginia/ATCC/2009 strains, we reported that the EB peptide extract from the microalgae showed 100-fold higher efficiency than the EB synthetic peptide. In addition, both the EB peptide extract and synthetic peptide inhibited viral replication in MDCK cells (IC50 = 20.7 nM and IC50 = 754.4 nM, respectively); however, the EB peptide extract showed a 32-fold higher antiviral effectiveness than the synthetic peptide against influenza A/H1N1 pdm. Extracts from untransformed and transformed microalgae and synthetic peptide did not show cytotoxic effect on MDCK cell monolayers. Thus, C. reinhardtii may be a fast, safe, and effective expression platform for production of peptides with significant antiviral activity and can be used as a prophylactic treatment to reduce viral propagation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA