Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(20): 20334-20344, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37797170

RESUMO

Charge exchange is the fundamental process that sustains cellular respiration and photosynthesis by shuttling electrons in a cascade of electron transfer (ET) steps between redox cofactors. While intraprotein charge exchange is well characterized in protein complexes bearing multiple redox sites, interprotein processes are less understood due to the lack of suitable experimental approaches and the dynamic nature of the interactions. Proteins constrained between electrodes are known to support electron transport (ETp) through the protein matrix even without redox cofactors, as the charges housed by the redox sites in ET are furnished by the electrodes. However, it is unknown whether protein ETp mechanisms apply to the interprotein medium present under physiological conditions. We study interprotein charge exchange between plant photosystem I (PSI) and its soluble redox partner plastocyanin (Pc) and address the role of the Pc copper center. Using electrochemical scanning tunneling spectroscopy (ECSTS) current-distance and blinking measurements, we quantify the spatial span of charge exchange between individual Pc/PSI pairs and ETp through transient Pc/PSI complexes. Pc devoid of the redox center (Pcapo) can exchange charge with PSI at longer distances than with the copper ion (Pcholo). Conductance bursts associated with Pcapo/PSI complex formation are higher than in Pcholo/PSI. Thus, copper ions are not required for long-distance Pc/PSI ETp but regulate its spatial span and conductance. Our results suggest that the redox center that carries the charge in Pc is not necessary to exchange it in interprotein ET through the aqueous solution and question the canonical view of tight complex binding between redox protein partners.


Assuntos
Complexo de Proteína do Fotossistema I , Plastocianina , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Plastocianina/química , Plastocianina/metabolismo , Cobre , Transporte de Elétrons , Oxirredução , Plantas/metabolismo
2.
ACS Nano ; 16(9): 15155-15164, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36067071

RESUMO

Photosynthesis is a fundamental process that converts photons into chemical energy, driven by large protein complexes at the thylakoid membranes of plants, cyanobacteria, and algae. In plants, water-soluble plastocyanin (Pc) is responsible for shuttling electrons between cytochrome b6f complex and the photosystem I (PSI) complex in the photosynthetic electron transport chain (PETC). For an efficient turnover, a transient complex must form between PSI and Pc in the PETC, which implies a balance between specificity and binding strength. Here, we studied the binding frequency and the unbinding force between suitably oriented plant PSI and Pc under redox control using single molecule force spectroscopy (SMFS). The binding frequency (observation of binding-unbinding events) between PSI and Pc depends on their respective redox states. The interaction between PSI and Pc is independent of the redox state of PSI when Pc is reduced, and it is disfavored in the dark (reduced P700) when Pc is oxidized. The frequency of interaction between PSI and Pc is higher when at least one of the partners is in a redox state ready for electron transfer (ET), and the post-ET situation (PSIRed-PcOx) leads to lower binding. In addition, we show that the binding of ET-ready PcRed to PSI can be regulated externally by Mg2+ ions in solution.


Assuntos
Complexo de Proteína do Fotossistema I , Plastocianina , Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Elétrons , Luz , Oxirredução , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Plastocianina/química , Plastocianina/metabolismo , Análise Espectral , Água/metabolismo
3.
FEBS J ; 289(9): 2685-2705, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34767295

RESUMO

The opportunistic human pathogen Pseudomonas aeruginosa exhibits great resistance to antibiotics; so, new therapeutic agents are urgently needed. Since polyamines levels are incremented in infected tissues, we explored whether the formation of a toxic aldehyde in polyamines degradation can be exploited in combating infection. We cloned the gene encoding the only aminoaldehyde dehydrogenase involved in P. aeruginosa polyamines-degradation routes, PaPauC, overexpressed this enzyme, and found that it oxidizes 3-aminopropionaldehyde (APAL) and 3-glutamyl-3-aminopropionaldehyde (GluAPAL) - produced in spermine (Spm), spermidine (Spd), and diaminopropane (Dap) degradation, as well as 4-aminobutyraldehyde (ABAL) and 4-glutamyl-4-aminobutyraldehyde (GluABAL) - formed in putrescine (Put) degradation. As the catalytic efficiency of PaPauC with APAL was 30-times lower than with GluAPAL, and GluAPAL is predominantly formed, APAL will be poorly oxidized 'in vivo'. We found polyamines-induced increases in the PaPauC activity of cell crude-extracts and in the expression of the PapauC gene that were diminished by glucose. Spm, Spd, or Dap, but not Put, were toxic to P. aeruginosa even in the presence of other carbon and nitrogen sources, particularly to a strain with the PapauC gene disrupted. APAL, but not GluAPAL, was highly toxic even to wild-type cells, suggesting that its accumulation, particularly in the absence of, or low, PaPauC activity is responsible for the toxicity of Spm, Spd, and Dap. Our results shed light on the toxicity mechanism of these three polyamines and strongly support the critical role of PaPauC in this toxicity. Thus, PaPauC emerges as a novel potential drug target whose inhibition might help in combating infection by this important pathogen.


Assuntos
Espermidina , Espermina , Aldeído Desidrogenase , Humanos , Poliaminas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Putrescina/farmacologia , Espermidina/farmacologia , Espermina/farmacologia
4.
Small ; 18(7): e2104366, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34874621

RESUMO

Charge separation and transport through the reaction center of photosystem I (PSI) is an essential part of the photosynthetic electron transport chain. A strategy is developed to immobilize and orient PSI complexes on gold electrodes allowing to probe the complex's electron acceptor side, the chlorophyll special pair P700. Electrochemical scanning tunneling microscopy (ECSTM) imaging and current-distance spectroscopy of single protein complex shows lateral size in agreement with its known dimensions, and a PSI apparent height that depends on the probe potential revealing a gating effect in protein conductance. In current-distance spectroscopy, it is observed that the distance-decay constant of the current between PSI and the ECSTM probe depends on the sample and probe electrode potentials. The longest charge exchange distance (lowest distance-decay constant ß) is observed at sample potential 0 mV/SSC (SSC: reference electrode silver/silver chloride) and probe potential 400 mV/SSC. These potentials correspond to hole injection into an electronic state that is available in the absence of illumination. It is proposed that a pair of tryptophan residues located at the interface between P700 and the solution and known to support the hydrophobic recognition of the PSI redox partner plastocyanin, may have an additional role as hole exchange mediator in charge transport through PSI.


Assuntos
Clorofila , Complexo de Proteína do Fotossistema I , Clorofila/química , Clorofila/metabolismo , Transporte de Elétrons , Cinética , Oxirredução , Fotossíntese , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo
5.
Acta Pharm ; 72(4): 509-527, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651363

RESUMO

In the present study the interaction of cannabinoid, PhAR-DBH-Me [(R, Z)-18-((1S,4S)-5-methyl-2,5-diazabicyclo[2.2.1]heptan-2-yl)-18-oxooctadec-9-en-7-ylphenyl-acetate] and tramadol in two neuropathy models, as well as their possible toxic effects, was analyzed. The anti-allodynic effect of PhAR-DBH-Me, tramadol, or their combination, were evaluated in neuropathic rats. Furthermore, the effective dose 35 (as the 35 % of the anti allodynic effect) was calculated from the maximum effect of each drug. Moreover, the isobolographic analysis was performed to determine the type of interaction between the drugs. A plasma acute toxicity study was carried out to assess the hepatic, renal, and heart functions after an individual or combined administration of the drugs, as well as histology using the hematoxylin-eosin or Masson-trichome method. PhAR-DBH-Me, tramadol, and their combination produced an antiallodynic effect on spinal nerve ligation (SNL) and cisplatin-induced neuropathic pain in rats. Moreover, PhAR-DBH-Me and tramadol combination showed a synergistic interaction in neuropathic pain rats induced by SNL but not for cisplatin-induced neuropathy. On the other hand, changes in renal and hepatic functions were not observed. Likewise, analysis of liver, kidney and heart histology showed no alterations compared with controls. Results show that the combination of PhAR-DBH-Me and tramadol attenuates the allodynia in SNL rats; the acute toxicology analysis suggests that this combination could be considered safe in administered doses.


Assuntos
Canabinoides , Neuralgia , Tramadol , Ratos , Animais , Tramadol/farmacologia , Analgésicos Opioides/farmacologia , Cisplatino , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Canabinoides/farmacologia
6.
Langmuir ; 37(39): 11465-11473, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34544234

RESUMO

This paper describes the fabrication of microfluidic devices with a focus on controlling the orientation of photosystem I (PSI) complexes, which directly affects the performance of biophotovoltaic devices by maximizing the efficiency of the extraction of electron/hole pairs from the complexes. The surface chemistry of the electrode on which the complexes assemble plays a critical role in their orientation. We compared the degree of orientation on self-assembled monolayers of phenyl-C61-butyric acid and a custom peptide on nanostructured gold electrodes. Biophotovoltaic devices fabricated with the C61 fulleroid exhibit significantly improved performance and reproducibility compared to those utilizing the peptide, yielding a 1.6-fold increase in efficiency. In addition, the C61-based devices were more stable under continuous illumination. Our findings show that fulleroids, which are well-known acceptor materials in organic photovoltaic devices, facilitate the extraction of electrons from PSI complexes without sacrificing control over the orientation of the complexes, highlighting this combination of traditional organic semiconductors with biomolecules as a viable approach to coopting natural photosynthetic systems for use in solar cells.


Assuntos
Fulerenos , Complexo de Proteína do Fotossistema I , Eletrodos , Elétrons , Complexo de Proteína do Fotossistema I/metabolismo , Reprodutibilidade dos Testes
7.
ACS Sens ; 6(2): 581-587, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33591733

RESUMO

Photosynthetic reactions in plants, algae, and cyanobacteria are driven by photosystem I and photosystem II complexes, which specifically reduce or oxidize partner redox biomolecules. Photosynthetic complexes can also bind synthetic organic molecules, which inhibit their photoactivity and can be used both to study the electron transport chain and as herbicides and algicides. Thus, their development, characterization, and sensing bears fundamental and applied interest. Substantial efforts have been devoted to developing photosensors based on photosystem II to detect compounds that bind to the plastoquinone sites of this complex. In comparison, photosystem I based sensors have received less attention and could be used to identify novel substances displaying phytotoxic effects, including those obtained from natural product extracts. We have developed a robust procedure to functionalize gold electrodes with photo- and redox-active photosystem I complexes based on transparent gold and a thiolate self-assembled monolayer, and we have obtained reproducible electrochemical photoresponses. Chronoamperometric recordings have allowed us to measure photocurrents in the presence of the viologen derivative paraquat at concentrations below 100 nM under lock-in operation and a sensor dynamic range spanning six orders of magnitude up to 100 mM. We have modeled their time course to identify the main electrochemical processes and limiting steps in the electron transport chain. Our results allow us to isolate the contributions from photosystem I and the redox mediator, and evaluate photocurrent features (spectral and power dependence, fast transient kinetics) that could be used as a sensing signal to detect other inhibitors and modulators of photosystem I activity.


Assuntos
Técnicas Biossensoriais , Complexo de Proteína do Fotossistema I , Transporte de Elétrons , Paraquat , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
8.
Pharmacol Res Perspect ; 8(5): e00663, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32965798

RESUMO

The antiallodynic effect of PhAR-DBH-Me was evaluated on two models of neuropathic pain, and the potential roles of CB1, CB2, and TRPV1 receptors as molecular targets of PhAR-DBH-Me were studied. Female Wistar rats were submitted to L5/L6 spinal nerve ligation (SNL) or repeated doses of cisplatin (0.1 mg/kg, i.p.) to induce experimental neuropathy. Then, tactile allodynia was determined, and animals were treated with logarithmic doses of PhAR-DBH-Me (3.2-100 mg/kg, i.p.). To evaluate the mechanism of action of PhAR-DBH-Me, in silico studies using crystallized structures of CB1, CB2, and TRPV1 receptors were performed. To corroborate the computational insights, animals were intraperitoneally administrated with antagonists for CB1 (AM-251, 3 mg/kg), CB2 (AM-630, 1 mg/kg), and TRPV1 receptors (capsazepine, 3 mg/kg), 15 min before to PhAR-DBH-Me (100 mg/kg) administration. Vagal stimulation evoked on striated muscle contraction in esophagus, was used to elicited pharmacological response of PhAR-DBH-ME on nervous tissue. Systemic administration of PhAR-DBH-Me reduced the SNL- and cisplatin-induced allodynia. Docking studies suggested that PhAR-DBH-Me acts as an agonist for CB1, CB2, and TRPV1 receptors, with similar affinity to the endogenous ligand anandamide. Moreover antiallodynic effect of PhAR-DBH-Me was partially prevented by administration of AM-251 and AM-630, and completely prevented by capsazepine. Finally, PhAR-DBH-Me decreased the vagally evoked electrical response in esophagus rat. Taken together, results indicate that PhAR-DBH-Me induces an antiallodynic effect through partial activation of CB1 and CB2 receptors, as well as desensitization of TRPV1 receptors. Data also shed light on the novel vanilloid nature of the synthetic compound PhAR-DBH-Me.


Assuntos
Compostos Azabicíclicos/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Hiperalgesia/induzido quimicamente , Ácidos Oleicos/farmacologia , Canais de Cátion TRPV/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Ácidos Araquidônicos/metabolismo , Compostos Azabicíclicos/administração & dosagem , Antagonistas de Receptores de Canabinoides/metabolismo , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Endocanabinoides/metabolismo , Feminino , Hiperalgesia/tratamento farmacológico , Injeções Intraperitoneais , Ligadura/métodos , Modelos Animais , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Ácidos Oleicos/administração & dosagem , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Ratos Wistar , Nervos Espinhais/efeitos dos fármacos , Nervos Espinhais/cirurgia , Canais de Cátion TRPV/antagonistas & inibidores , Estimulação do Nervo Vago/métodos
9.
Angew Chem Int Ed Engl ; 58(38): 13280-13284, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31310425

RESUMO

The transport of electrons along photosynthetic and respiratory chains involves a series of enzymatic reactions that are coupled through redox mediators, including proteins and small molecules. The use of native and synthetic redox probes is key to understanding charge transport mechanisms and to the design of bioelectronic sensors and solar energy conversion devices. However, redox probes have limited tunability to exchange charge at the desired electrochemical potentials (energy levels) and at different protein sites. Herein, we take advantage of electrochemical scanning tunneling microscopy (ECSTM) to control the Fermi level and nanometric position of the ECSTM probe in order to study electron transport in individual photosystem I (PSI) complexes. Current-distance measurements at different potentiostatic conditions indicate that PSI supports long-distance transport that is electrochemically gated near the redox potential of P700, with current extending farther under hole injection conditions.

10.
Eur J Med Chem ; 146: 621-635, 2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29407986

RESUMO

The present study seeks to describe the design and synthesis of six new Michael adducts of (1S,4S)-2,5-diazabicyclo[2.2.1]heptane-dithiocarbamate with nitrostyrenes and their in vitro antiproliferative activity against human cervical cancer cell lines [HeLa (HPV 18 positive), CaSki (HPV 16 positive) and ViBo (HPV negative) cervical cancer cell lines]. Virtual screening of the physicochemical properties of all compounds have also been presented. All the compounds exploited significant antiproliferative activity on the three cervical cancer cell lines. Compound 8a was found to be most potent, displaying in vitro antiproliferative activity against HeLa, CaSki and ViBo cervical cancer cell lines superior to Cisplatin and Paclitaxel with IC50 values 0.99 ±â€¯0.007, 2.36 ±â€¯0.016 and 0.73 ±â€¯0.002 µM respectively. In addition, compound 8a did not trigger the necrosis cell death to the test cancer cell lines. Further mechanistic study revealed that compound 8a could inhibit the cancer cell proliferation by inducing apoptosis through caspase-3 activation. Moreover, cell cycle analysis indicated that compound 8a could arrest the cell cycle at the G1 phase for HeLa and CaSki cancer cells. At the predetermined IC50 values on cancer cells, compound 8a did not induce any necrotic (cytotoxic) death to the normal human lymphocytes. In the present design, (1S,4S)-2,5-diazabicyclo[2.2.1]heptane system was found to be superior than the piperazine counterpart 11.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Aza/farmacologia , Nitrocompostos/farmacologia , Estireno/farmacologia , Tiocarbamatos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos Aza/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Estrutura Molecular , Nitrocompostos/química , Relação Estrutura-Atividade , Estireno/química , Tiocarbamatos/química , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/patologia
11.
J Enzyme Inhib Med Chem ; 32(1): 1129-1135, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28868930

RESUMO

Identification of a new class of antitumor agent capable to induce apoptosis without triggering necrotic cell death event is challenging. The present communication describes the multicomponent synthesis of seven new (1S,4S)-2,5-diazabicyclo[2.2.1]heptane-dithiocarbamates and their in vitro antiproliferative activity on cervical cancer cell line (CaSki), breast cancer cell line (MDA-MB231), lung cancer cell line (SK-Lu-1) and human lymphocytes. Among the synthesized dithiocarbamates, compound 9e displayed significant antiproliferative activity without inducing any necrotic cell death (both on tumour cells and lymphocytes) and induced apoptosis in tumor cells by the caspase dependent apoptotic pathway. The compound 9e also exhibited greater tumor selectivity than human lymphocytes. In silico ADME predictions revealed that compound 9e has the potential to be developed as a drug candidate. Rapid chemical modifications of this lead are thus highly necessary for further investigation as a drug like safer antitumor candidate and also to achieve compounds with better activity profile.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Azabicíclicos/farmacologia , Tiocarbamatos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos Azabicíclicos/síntese química , Compostos Azabicíclicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiocarbamatos/síntese química , Tiocarbamatos/química
12.
PLoS One ; 11(9): e0162171, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27683101

RESUMO

Amphotericin B is the most potent antimycotic known to date. However due to its large collateral toxicity, its use, although long standing, had been limited. Many attempts have been made to produce derivatives with reduced collateral damage. The molecular mechanism of polyene has also been closely studied for this purpose and understanding it would contribute to the development of safe derivatives. Our study examined polyene action, including chemical synthesis, electrophysiology, pharmacology, toxicology and molecular dynamics. The results were used to support a novel Amphotericin B derivative with increased selectivity: L-histidine methyl ester of Amphotericin B. We found that this derivative has the same form of action as Amphotericin B, i.e. pore formation in the cell membrane. Its reduced dimerization in solution, when compared to Amphotericin B, is at least partially responsible for its increased selectivity. Here we also present the results of preclinical tests, which show that the derivative is just as potent as Amphotericin B and has increased safety.

13.
Chem Biol Drug Des ; 83(6): 710-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24443990

RESUMO

Two diazabicyclic analogues of ranolazine, (S,S,S)-5 and (S,S,R)-5, and their epimeric mixture were synthesized. Furthermore, their vasomotor effects on rat aorta rings precontracted with phenylephrine were analyzed. These compounds showed vasodilating effects significantly greater than ranolazine. The vasodilating activities of these analogues have two components, one that depends on the endothelium, due to the release of NO, and another one due to a direct effect on the vascular smooth muscle. The compounds [(S,S,S)(S,S,R)]-5 and (S,S,R)-5 induce, in a manner similar to ranolazine, the release of a prostanoid from the cyclooxygenase pathway, whose vasoconstrictor effect is masked by the predominant vasodilation induced by these compounds.


Assuntos
Acetanilidas/síntese química , Acetanilidas/farmacologia , Piperazinas/síntese química , Piperazinas/farmacologia , Vasoconstritores/síntese química , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Acetanilidas/química , Animais , Compostos Aza/síntese química , Compostos Aza/química , Compostos Aza/farmacologia , Ciclização , Heptanos/síntese química , Heptanos/química , Heptanos/farmacologia , Concentração Inibidora 50 , Músculo Liso Vascular/efeitos dos fármacos , Piperazinas/química , Ranolazina , Ratos , Vasoconstritores/química
14.
Biochimie ; 93(2): 286-95, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20933050

RESUMO

Betaine aldehyde dehydrogenase from the human opportunistic pathogen Pseudomonas aeruginosa (PaBADH) catalyzes the irreversible, NAD(P)(+)-dependent oxidation of betaine aldehyde, producing glycine betaine, an osmoprotectant. PaBADH participates in the catabolism of choline and likely in the defense against the osmotic and oxidative stresses to which the bacterium is exposed when infecting human tissues. Given that choline or choline precursors are abundant in infected tissues, PaBADH is a potential drug target because its inhibition will lead to the build up of the toxic betaine aldehyde inside bacterial cells. We tested the thiol reagents, disulfiram (DSF) and five DSF metabolites-diethyldithiocarbamic acid (DDC), S-methyl-N,N-diethyldithiocarbamoyl sulfoxide (MeDDTC-SO) and sulfone (MeDDTC-SO(2)), and S-methyl-N,N-diethylthiocarbamoyl sulfoxide (MeDTC-SO) and sulfone (MeDTC-SO(2))-as inhibitors of PaBADH and P. aeruginosa growth. As in vitro PaBADH inhibitors, their order of potency was: MeDDTC-SO(2)>DSF>MeDTC-SO(2)>MeDDTC-SO>MeDTC-SO. DDC did not inactivate the enzyme. PaBADH inactivation by DSF metabolites (i) was not affected by NAD(P)(+), (ii) could not be reverted by dithiothreitol, and (iii) did not affect the quaternary structure of the enzyme. Of the DSF metabolites tested, MeDTC-SO(2) and MeDDTC-SO produced significant in situ PaBADH inactivation and arrest of P. aeruginosa growth in choline containing media, in which the expression of PaBADH is induced. They had no effect in media lacking choline, indicating that PaBADH is their main intracellular target, and that arrest of growth is due to accumulation of betaine aldehyde. The in vitro and in situ kinetics of enzyme inactivation by these two compounds were very similar, indicating no restriction on their uptake by the cells. MeDDTC-SO(2) and DSF have no inhibitory effects in situ, probably because their high reactivity towards intracellular nonessential thiols causes their depletion. Our results support that PaBADH is a promising target to treat P. aeruginosa infections, and that some DSF metabolites might be of help in this aim.


Assuntos
Antibacterianos/farmacologia , Betaína-Aldeído Desidrogenase/metabolismo , Dissulfiram/metabolismo , Ditiocarb/análogos & derivados , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Sulfóxidos/farmacologia , Antibacterianos/metabolismo , Betaína-Aldeído Desidrogenase/antagonistas & inibidores , Betaína-Aldeído Desidrogenase/química , Células Cultivadas , Dissulfiram/farmacologia , Ditiocarb/metabolismo , Ditiocarb/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Proteica , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Sulfóxidos/metabolismo
15.
Bioorg Med Chem Lett ; 20(11): 3231-4, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20457524

RESUMO

Endocannabinoids (eCBs) are endogenous neuromodulators of synaptic transmission. Their dysfunction may cause debilitating disorders of diverse clinical manifestation. For example, drug addiction, lack of sex desire, eating disorders, such as anorexia or bulimia and dyssomnias. eCBs also participate in the regulation of core temperature and pain perception. In this context, it is important to recognize the utility of cannabinoid receptor 1 (CB1R) agonists, natural as Delta(9)-tetrahydrocannabinol (THC) or synthetic as Nabilone as useful drugs to alleviate this kind of patients' suffering. Therefore, we have developed a new drug, (R,Z)-18-((1S,4S)-5-methyl-2,5-diazabicyclo[2.2.1]heptan-2-yl)-18-oxooctadec-9-en-7-yl phenylacetate (PhAR-DBH-Me), that appears to bind and activate the CB1R. This diazabicyclic amide was synthesized from phenylacetylricinoleic acid and (1S,4S)-2,5-diazabicyclo[2.2.1]heptane. To test its cannabinergic properties we evaluated its effects on core temperature, pain perception, and the sleep-waking cycle of rats. Results indicate that 20 and 40mg/kg of PhAR-DBH-Me readily reduced core temperature and increased pain perception threshold. In addition, 20mg/kg increased REM sleep in otherwise normal rats. All these effects were prevented or attenuated by AM251, a CB1R antagonist. Place preference conditioning studies indicated that this molecule does not produce rewarding effects. These results strongly support that PhAR-DBH-Me possesses cannabinoid activity without the reinforcement effects.


Assuntos
Compostos Aza/química , Compostos Azabicíclicos/síntese química , Compostos Azabicíclicos/farmacologia , Compostos Bicíclicos com Pontes/química , Canabinoides/síntese química , Canabinoides/farmacologia , Ácidos Oleicos/síntese química , Ácidos Oleicos/farmacologia , Amidas/química , Animais , Ratos , Receptor CB1 de Canabinoide/agonistas , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...