Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1258859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529406

RESUMO

The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.

2.
Gut ; 73(4): 601-612, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38176897

RESUMO

OBJECTIVE: Mucosal T cells play a major role in inflammatory bowel disease (IBD). However, their immunometabolism during intestinal inflammation is poorly understood. Due to its impact on cellular metabolism and proinflammatory immune cell function, we here focus on the enzyme ATP citrate lyase (ACLY) in mucosal T cell immunometabolism and its relevance for IBD. DESIGN: ACLY expression and its immunometabolic impact on colitogenic T cell function were analysed in mucosal T cells from patients with IBD and in two experimental colitis models. RESULTS: ACLY was markedly expressed in colon tissue under steady-state conditions but was significantly downregulated in lamina propria mononuclear cells in experimental dextran sodium sulfate-induced colitis and in CD4+ and to a lesser extent in CD8+ T cells infiltrating the inflamed gut in patients with IBD. ACLY-deficient CD4+ T cells showed an impaired capacity to induce intestinal inflammation in a transfer colitis model as compared with wild-type T cells. Assessment of T cell immunometabolism revealed that ACLY deficiency dampened the production of IBD-relevant cytokines and impaired glycolytic ATP production but enriched metabolites involved in the biosynthesis of phospholipids and phosphatidylcholine. Interestingly, the short-chain fatty acid butyrate was identified as a potent suppressor of ACLY expression in T cells, while IL-36α and resolvin E1 induced ACLY levels. In a translational approach, in vivo administration of the butyrate prodrug tributyrin downregulated mucosal infiltration of ACLYhigh CD4+ T cells and ameliorated chronic colitis. CONCLUSION: ACLY controls mucosal T cell immunometabolism and experimental colitis. Therapeutic modulation of ACLY expression in T cells emerges as a novel strategy to promote the resolution of intestinal inflammation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Linfócitos Intraepiteliais , Humanos , Animais , Linfócitos Intraepiteliais/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Colite/metabolismo , Inflamação/metabolismo , Butiratos , Mucosa Intestinal/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças
3.
Gut ; 72(11): 2081-2094, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541770

RESUMO

IL-3 has been reported to be involved in various inflammatory disorders, but its role in inflammatory bowel disease (IBD) has not been addressed so far. Here, we determined IL-3 expression in samples from patients with IBD and studied the impact of Il3 or Il3r deficiency on T cell-dependent experimental colitis. We explored the mechanical, cytoskeletal and migratory properties of Il3r -/- and Il3r +/+ T cells using real-time deformability cytometry, atomic force microscopy, scanning electron microscopy, fluorescence recovery after photobleaching and in vitro and in vivo cell trafficking assays. We observed that, in patients with IBD, the levels of IL-3 in the inflamed mucosa were increased. In vivo, experimental chronic colitis on T cell transfer was exacerbated in the absence of Il-3 or Il-3r signalling. This was attributable to Il-3r signalling-induced changes in kinase phosphorylation and actin cytoskeleton structure, resulting in increased mechanical deformability and enhanced egress of Tregs from the inflamed colon mucosa. Similarly, IL-3 controlled mechanobiology in human Tregs and was associated with increased mucosal Treg abundance in patients with IBD. Collectively, our data reveal that IL-3 signaling exerts an important regulatory role at the interface of biophysical and migratory T cell features in intestinal inflammation and suggest that this might be an interesting target for future intervention.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Linfócitos T Reguladores , Receptores de Interleucina-3/metabolismo , Interleucina-3/metabolismo , Inflamação/metabolismo , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo
4.
Nat Biomed Eng ; 7(11): 1392-1403, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37024677

RESUMO

During surgery, rapid and accurate histopathological diagnosis is essential for clinical decision making. Yet the prevalent method of intra-operative consultation pathology is intensive in time, labour and costs, and requires the expertise of trained pathologists. Here we show that biopsy samples can be analysed within 30 min by sequentially assessing the physical phenotypes of singularized suspended cells dissociated from the tissues. The diagnostic method combines the enzyme-free mechanical dissociation of tissues, real-time deformability cytometry at rates of 100-1,000 cells s-1 and data analysis by unsupervised dimensionality reduction and logistic regression. Physical phenotype parameters extracted from brightfield images of single cells distinguished cell subpopulations in various tissues, enhancing or even substituting measurements of molecular markers. We used the method to quantify the degree of colon inflammation and to accurately discriminate healthy and tumorous tissue in biopsy samples of mouse and human colons. This fast and label-free approach may aid the intra-operative detection of pathological changes in solid biopsies.


Assuntos
Biópsia , Humanos , Fenótipo
5.
Gut ; 72(2): 275-294, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35241625

RESUMO

OBJECTIVE: Increased apoptotic shedding has been linked to intestinal barrier dysfunction and development of inflammatory bowel diseases (IBD). In contrast, physiological cell shedding allows the renewal of the epithelial monolayer without compromising the barrier function. Here, we investigated the role of live cell extrusion in epithelial barrier alterations in IBD. DESIGN: Taking advantage of conditional GGTase and RAC1 knockout mice in intestinal epithelial cells (Pggt1b iΔIEC and Rac1 iΔIEC mice), intravital microscopy, immunostaining, mechanobiology, organoid techniques and RNA sequencing, we analysed cell shedding alterations within the intestinal epithelium. Moreover, we examined human gut tissue and intestinal organoids from patients with IBD for cell shedding alterations and RAC1 function. RESULTS: Epithelial Pggt1b deletion led to cytoskeleton rearrangement and tight junction redistribution, causing cell overcrowding due to arresting of cell shedding that finally resulted in epithelial leakage and spontaneous mucosal inflammation in the small and to a lesser extent in the large intestine. Both in vivo and in vitro studies (knockout mice, organoids) identified RAC1 as a GGTase target critically involved in prenylation-dependent cytoskeleton dynamics, cell mechanics and epithelial cell shedding. Moreover, inflamed areas of gut tissue from patients with IBD exhibited funnel-like structures, signs of arrested cell shedding and impaired RAC1 function. RAC1 inhibition in human intestinal organoids caused actin alterations compatible with arresting of cell shedding. CONCLUSION: Impaired epithelial RAC1 function causes cell overcrowding and epithelial leakage thus inducing chronic intestinal inflammation. Epithelial RAC1 emerges as key regulator of cytoskeletal dynamics, cell mechanics and intestinal cell shedding. Modulation of RAC1 might be exploited for restoration of epithelial integrity in the gut of patients with IBD.


Assuntos
Citoesqueleto , Doenças Inflamatórias Intestinais , Animais , Humanos , Camundongos , Células Epiteliais , Inflamação , Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal/fisiologia , Camundongos Knockout , Proteínas rac1 de Ligação ao GTP
6.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35456978

RESUMO

The gut barrier acts as a first line of defense in the body, and plays a vital role in nutrition and immunoregulation. A layer of epithelial cells bound together via intercellular junction proteins maintains intestinal barrier integrity. Based on a tight equilibrium between cell extrusion and cell restitution, the renewal of the epithelium (epithelial turnover) permits the preservation of cell numbers. As the last step within the epithelial turnover, cell shedding occurs due to the pressure of cell division and migration from the base of the crypt. During this process, redistribution of tight junction proteins enables the sealing of the epithelial gap left by the extruded cell, and thereby maintains barrier function. Disturbance in cell shedding can create transient gaps (leaky gut) or cell accumulation in the epithelial layer. In fact, numerous studies have described the association between dysregulated cell shedding and infection, inflammation, and cancer; thus epithelial cell extrusion is considered a key defense mechanism. In the gastrointestinal tract, altered cell shedding has been observed in mouse models of intestinal inflammation and appears as a potential cause of barrier loss in human inflammatory bowel disease (IBD). Despite the relevance of this process, there are many unanswered questions regarding cell shedding. The investigation of those mechanisms controlling cell extrusion in the gut will definitely contribute to our understanding of intestinal homeostasis. In this review, we summarized the current knowledge about intestinal cell shedding under both physiological and pathological circumstances.


Assuntos
Doenças Inflamatórias Intestinais , Mucosa Intestinal , Animais , Células Epiteliais/metabolismo , Homeostase , Inflamação/patologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Camundongos
7.
Mucosal Immunol ; 15(1): 130-142, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34497340

RESUMO

Intestinal homeostasis and the maintenance of the intestinal epithelial barrier are essential components of host defense during gastrointestinal Salmonella Typhimurium infection. Both require a strict regulation of cell death. However, the molecular pathways regulating epithelial cell death have not been completely understood. Here, we elucidated the contribution of central mechanisms of regulated cell death and upstream regulatory components during gastrointestinal infection. Mice lacking Caspase-8 in the intestinal epithelium are highly sensitive towards bacterial induced enteritis and intestinal inflammation, resulting in an enhanced lethality of these mice. This phenotype was associated with an increased STAT1 activation during Salmonella infection. Cell death, barrier breakdown and systemic infection were abrogated by an additional deletion of STAT1 in Casp8ΔIEC mice. In the absence of epithelial STAT1, loss of epithelial cells was abolished which was accompanied by a reduced Caspase-8 activation. Mechanistically, we demonstrate that epithelial STAT1 acts upstream of Caspase-8-dependent as well as -independent cell death and thus might play a major role at the crossroad of several central cell death pathways in the intestinal epithelium. In summary, we uncovered that transcriptional control of STAT1 is an essential host response mechanism that is required for the maintenance of intestinal barrier function and host survival.


Assuntos
Caspase 8/metabolismo , Células Epiteliais/fisiologia , Gastroenteropatias/imunologia , Fator de Transcrição STAT1/metabolismo , Infecções por Salmonella/imunologia , Salmonella typhimurium/fisiologia , Animais , Caspase 8/genética , Morte Celular , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT1/genética , Transdução de Sinais
8.
Front Med (Lausanne) ; 8: 655123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368179

RESUMO

Intestinal symptoms, such as nausea, vomiting, and constipation, are common in Parkinson's disease patients. These clinical signs normally appear years before the diagnosis of the neurodegenerative disease, preceding the occurrence of motor manifestations. Moreover, it is postulated that Parkinson's disease might originate in the gut, due to a response against the intestinal microbiota leading to alterations in alpha-synuclein in the intestinal autonomic nervous system. Transmission of this protein to the central nervous system is mediated potentially via the vagus nerve. Thus, deposition of aggregated alpha-synuclein in the gastrointestinal tract has been suggested as a potential prodromal diagnostic marker for Parkinson's disease. Interestingly, hallmarks of chronic intestinal inflammation in inflammatory bowel disease, such as dysbiosis and increased intestinal permeability, are also observed in Parkinson's disease patients. Additionally, alpha-synuclein accumulations were detected in the gut of Crohn's disease patients. Despite a solid association between neurodegenerative diseases and gut inflammation, it is not clear whether intestinal alterations represent cause or consequence of neuroinflammation in the central nervous system. In this review, we summarize the bidirectional communication between the brain and the gut in the context of Parkinson's disease and intestinal dysfunction/inflammation as present in inflammatory bowel disease. Further, we focus on the contribution of intestinal epithelium, the communication between intestinal epithelial cells, microbiota, immune and neuronal cells, as well as mechanisms causing alterations of epithelial integrity.

9.
Cells ; 10(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406731

RESUMO

Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.


Assuntos
Gastroenteropatias/enzimologia , Mucosa Intestinal/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Trato Gastrointestinal/patologia , Humanos , Inflamação/patologia , Mucosa Intestinal/patologia , Proteína cdc42 de Ligação ao GTP/metabolismo
10.
Inflamm Bowel Dis ; 27(9): 1491-1502, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33393634

RESUMO

BACKGROUND: The understanding of vascular plasticity is key to defining the role of blood vessels in physiologic and pathogenic processes. In the present study, the impact of the vascular quiescence marker SPARCL1 on angiogenesis, capillary morphogenesis, and vessel integrity was evaluated. METHODS: Angiogenesis was studied using the metatarsal test, an ex vivo model of sprouting angiogenesis. In addition, acute and chronic dextran sodium sulfate colitis models with SPARCL1 knockout mice were applied. RESULTS: This approach indicated that SPARCL1 inhibits angiogenesis and supports vessel morphogenesis and integrity. Evidence was provided that SPARCL1-mediated stabilization of vessel integrity counteracts vessel permeability and inflammation in acute and chronic dextran sodium sulfate colitis models. Structure-function analyses of purified SPARCL1 identified the acidic domain of the protein necessary for its anti-angiogenic activity. CONCLUSIONS: Our findings inaugurate SPARCL1 as a blood vessel-derived anti-angiogenic molecule required for vessel morphogenesis and integrity. SPARCL1 opens new perspectives as a vascular marker of susceptibility to colitis and as a therapeutic molecule to support blood vessel stability in this disease.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Colite , Proteínas da Matriz Extracelular/metabolismo , Neovascularização Patológica , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Camundongos , Camundongos Knockout
11.
J Vis Exp ; (166)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33346195

RESUMO

Intravital microscopy of the gut using confocal imaging allows real time observation of epithelial cell shedding and barrier leakage in living animals. Therefore, the intestinal mucosa of anesthetized mice is topically stained with unspecific staining (acriflavine) and a fluorescent tracer (rhodamine-B dextran), mounted on a saline solution-rinsed plate and directly imaged using a confocal microscope. This technique can complement other non-invasive techniques to identify leakage of intestinal permeability, such as transmucosal passage of orally administered tracers. Besides this, the approach presented here allows the direct observation of cell shedding events at real-time. In combination with appropriate fluorescent reporter mice, this approach is suitable for shedding light into cellular and molecular mechanisms controlling intestinal epithelial cell extrusion, as well as to other biological processes. In the last decades, interesting studies using intravital microscopy have contributed to knowledge on endothelial permeability, immune cell gut homing, immune-epithelial communication and invasion of luminal components, among others. Together, the protocol presented here would not only help increase the understanding of mechanisms controlling epithelial cell extrusion, but could also be the basis for the developmental of other approaches to be used as instruments to visualize other highly dynamic cellular process, even in other tissues. Among technical limitations, optical properties of the specific tissue, as well as the selected imaging technology and microscope configuration, would in turn, determine the imaging working distance, and resolution of acquired images.


Assuntos
Células Epiteliais/metabolismo , Mucosa Intestinal/fisiologia , Microscopia Intravital , Alquil e Aril Transferases/metabolismo , Animais , Processamento de Imagem Assistida por Computador , Camundongos , Permeabilidade , Coloração e Rotulagem
12.
Front Immunol ; 11: 691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457736

RESUMO

Cystic fibrosis patients suffer from a progressive, often fatal lung disease, which is based on a complex interplay between chronic infections, locally accumulating immune cells and pulmonary tissue remodeling. Although group-2 innate lymphoid cells (ILC2s) act as crucial initiators of lung inflammation, our understanding of their involvement in the pathogenesis of cystic fibrosis remains incomplete. Here we report a marked decrease of circulating CCR6+ ILC2s in the blood of cystic fibrosis patients, which significantly correlated with high disease severity and advanced pulmonary failure, strongly implicating increased ILC2 homing from the peripheral blood to the chronically inflamed lung tissue in cystic fibrosis patients. On a functional level, the CCR6 ligand CCL20 was identified as potent promoter of lung-directed ILC2 migration upon inflammatory conditions in vitro and in vivo using a new humanized mouse model with light-sheet fluorescence microscopic visualization of lung-accumulated human ILC2s. In the lung, blood-derived human ILC2s were able to augment local eosinophil and neutrophil accumulation and induced a marked upregulation of pulmonary type-VI collagen expression. Studies in primary human lung fibroblasts additionally revealed ILC2-derived IL-4 and IL-13 as important mediators of this type-VI collagen-inducing effect. Taken together, the here acquired results suggest that pathologically increased CCL20 levels in cystic fibrosis airways induce CCR6-mediated lung homing of circulating human ILC2s. Subsequent ILC2 activation then triggers local production of type-VI collagen and might thereby drive extracellular matrix remodeling potentially influencing pulmonary tissue destruction in cystic fibrosis patients. Thus, modulating the lung homing capacity of circulating ILC2s and their local effector functions opens new therapeutic avenues for cystic fibrosis treatment.


Assuntos
Fibrose Cística/sangue , Imunidade Inata , Pulmão/imunologia , Ativação Linfocitária , Linfócitos/imunologia , Receptores CCR6/metabolismo , Insuficiência Respiratória/imunologia , Adolescente , Adulto , Idoso , Animais , Artrite Reumatoide/sangue , Movimento Celular/imunologia , Quimiocina CCL20/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Doenças Inflamatórias Intestinais/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
13.
Gastroenterology ; 157(5): 1293-1309, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31302143

RESUMO

BACKGROUND & AIMS: It is not clear how regulation of T-cell function is altered during development of inflammatory bowel diseases (IBD). We studied the mechanisms by which geranylgeranyltransferase-mediated prenylation controls T-cell localization to the intestine and chronic inflammation. METHODS: We generated mice with T-cell-specific disruption of the geranylgeranyltransferase type I, beta subunit gene (Pggt1b), called Pggt1bΔCD4 mice, or the ras homolog family member A gene (Rhoa), called RhoaΔCD4 mice. We also studied mice with knockout of CDC42 or RAC1 and wild-type mice (controls). Intestinal tissues were analyzed by histology, multiphoton and confocal microscopy, and real-time polymerase chain reaction. Activation of CDC42, RAC1, and RHOA were measured with G-LISA, cell fractionation, and immunoblots. T cells and lamina propria mononuclear cells from mice were analyzed by flow cytometry or transferred to Rag1-/- mice. Mice were given injections of antibodies against integrin alpha4beta7 or gavaged with the RORC antagonist GSK805. We obtained peripheral blood and intestinal tissue samples from patients with and without IBD and analyzed them by flow cytometry. RESULTS: Pggt1bΔCD4 mice developed spontaneous colitis, characterized by thickening of the intestinal wall, edema, fibrosis, accumulation of T cells in the colon, and increased expression of inflammatory cytokines. Compared with control CD4+ T cells, PGGT1B-deficient CD4+ T cells expressed significantly higher levels of integrin alpha4beta7, which regulates their localization to the intestine. Inflammation induced by transfer of PGGT1B-deficient CD4+ T cells to Rag1-/- mice was blocked by injection of an antibody against integrin alpha4beta7. Lamina propria of Pggt1bΔCD4 mice had increased numbers of CD4+ T cells that expressed RORC and higher levels of cytokines produced by T-helper 17 cells (granulocyte-macrophage colony-stimulating factor, interleukin [IL]17A, IL17F, IL22, and tumor necrosis factor [TNF]). The RORC inverse agonist GSK805, but not antibodies against IL17A or IL17F, prevented colitis in Pggt1bΔCD4 mice. PGGT1B-deficient CD4+ T cells had decreased activation of RHOA. RhoAΔCD4 mice had a similar phenotype to Pggt1bΔCD4 mice, including development of colitis, increased numbers of CD4+ T cells in colon, increased expression of integrin alpha4beta7 by CD4+ T cells, and increased levels of IL17A and other inflammatory cytokines in lamina propria. T cells isolated from intestinal tissues from patients with IBD had significantly lower levels of PGGT1B than tissues from individuals without IBD. CONCLUSION: Loss of PGGT1B from T cells in mice impairs RHOA function, increasing CD4+ T-cell expression of integrin alpha4beta7 and localization to colon, resulting in increased expression of inflammatory cytokines and colitis. T cells isolated from gut tissues from patients with IBD have lower levels of PGGT1B than tissues from patients without IBD.


Assuntos
Alquil e Aril Transferases/deficiência , Quimiotaxia de Leucócito , Colite/enzimologia , Colo/enzimologia , Integrinas/metabolismo , Linfócitos T/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Imunidade Adaptativa , Alquil e Aril Transferases/genética , Animais , Estudos de Casos e Controles , Células Cultivadas , Colite/genética , Colite/imunologia , Colite/patologia , Colo/imunologia , Colo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Camundongos Knockout , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/patologia , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/deficiência , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP
14.
Nat Immunol ; 20(4): 514, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30846879

RESUMO

In the version of this article initially published, a portion of the Acknowledgements section ("the Clinical Research Group CEDER of the German Research Council (DFG)") was incorrect. The correct statement is as follows: "...the Collaborative Research Center TRR241 of the German Research Council (DFG)...". The error has been corrected in the HTML and PDF version of the article.

15.
Nat Immunol ; 20(3): 288-300, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692620

RESUMO

Although tissue-resident memory T cells (TRM cells) have been shown to regulate host protection in infectious disorders, their function in inflammatory bowel disease (IBD) remains to be investigated. Here we characterized TRM cells in human IBD and in experimental models of intestinal inflammation. Pro-inflammatory TRM cells accumulated in the mucosa of patients with IBD, and the presence of CD4+CD69+CD103+ TRM cells was predictive of the development of flares. In vivo, functional impairment of TRM cells in mice with double knockout of the TRM-cell-associated transcription factors Hobit and Blimp-1 attenuated disease in several models of colitis, due to impaired cross-talk between the adaptive and innate immune system. Finally, depletion of TRM cells led to a suppression of colitis activity. Together, our data demonstrate a central role for TRM cells in the pathogenesis of chronic intestinal inflammation and suggest that these cells could be targets for future therapeutic approaches in IBD.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Colite/imunologia , Memória Imunológica/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Fatores de Transcrição/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Doença Crônica , Colite/genética , Colite/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Memória Imunológica/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo/deficiência , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
16.
Sci Rep ; 8(1): 17350, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478292

RESUMO

Regulation of miR-146a abundance and its role in intestinal inflammation and particularly in intestinal epithelial cells (IECs) has been poorly studied. Here we study the relationship between bacterial antigens and inflammatory stimuli, and miR-146a expression using IEC lines and models of colitis (trinitrobenzenesulfonic acid (TNBS), dextran sulfate sodium (DSS) and the CD4 + CD62L + T cell transfer model). Specific bacterial antigens and cytokines (LPS, flagelin and IL-1ß/TNF) stimulate miR-146a expression, while peptidoglycan, muramyldipeptide and CpG DNA have no effect. Overexpression of miR-146a by LPS depends on the activation of the TLR4/MyD88/NF-kB and Akt pathways. Accordingly, the induction of miR-146a is lower in TLR4, but not in TLR2 knock out mice in both basal and colitic conditions. miR-146a overexpression in IECs induces immune tolerance, inhibiting cytokine production (MCP-1 and GROα/IL-8) in response to LPS (IEC18) or IL-1ß (Caco-2). Intestinal inflammation induced by chemical damage to the epithelium (DSS and TNBS models) induces miR-146a, but no effect is observed in the lymphocyte transfer model. Finally, we found that miR-146a expression is upregulated in purified IECs from villi vs. crypts. Our results indicate that miR-146a is a key molecule in the interaction among IECs, inflammatory stimuli and the microbiota.


Assuntos
Colite/genética , Microbioma Gastrointestinal/genética , Intestinos/citologia , MicroRNAs/genética , Animais , Linhagem Celular , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Flagelina/toxicidade , Proteínas de Homeodomínio/genética , Humanos , Intestinos/microbiologia , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Ratos Wistar , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
17.
Front Immunol ; 8: 1240, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051760

RESUMO

An essential role of the intestine is to build and maintain a barrier preventing the luminal gut microbiota from invading the host. This involves two coordinated physical and immunological barriers formed by single layers of intestinal epithelial and endothelial cells, which avoid the activation of local immune responses or the systemic dissemination of microbial agents, and preserve tissue homeostasis. Accordingly, alterations of epithelial and endothelial barrier functions have been associated with gut inflammation, for example during inflammatory bowel disease (IBD). The discriminative control of nutriment uptake and sealing toward potentially pathological microorganisms requires a profound regulation of para- and transcellular permeability. On the subcellular level, the cytoskeleton exerts key regulatory functions in the maintenance of cellular barriers. Increased epithelial/endothelial permeability occurs primarily as a result of a reorganization of cytoskeletal-junctional complexes. Pro-inflammatory mediators such as cytokines can induce cytoskeletal rearrangements, causing inflammation-dependent defects in gut barrier function. In this context, small GTPases of the Rho family and large GTPases from the Dynamin superfamily appear as major cellular switches regulating the interaction between intercellular junctions and actomyosin complexes, and in turn cytoskeleton plasticity. Strikingly, some of these proteins, such as RhoA or guanylate-binding protein-1 (GBP-1) have been associated with gut inflammation and IBD. In this review, we will summarize the role of small and large GTPases for cytoskeleton plasticity and epithelial/endothelial barrier in the context of gut inflammation.

18.
Inflamm Bowel Dis ; 23(3): 379-391, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28221249

RESUMO

BACKGROUND: The precise mechanisms controlling homing of T effector (Teff) cells to the inflamed gut in Crohn's disease (CD) are still unclear, and clinical outcome data from patients with inflammatory bowel disease treated with the anti-α4ß7 integrin antibody vedolizumab suggest differences between ulcerative colitis and CD. METHODS: Expression of homing molecules was studied with flow cytometry and immunohistochemistry. Their functional role was investigated in in vitro adhesion assays and in a humanized mouse model of T cell homing to the inflamed gut in vivo. RESULTS: Despite in vitro blockade of CD Teff adhesion to mucosal vascular addressin cell adhesion molecule-1 (MadCAM-1) and in contrast to previous observations in ulcerative colitis, anti-α4ß7 treatment did not result in reduced Teff cell homing to the colon in vivo. However, the integrin α4ß1 was expressed in higher levels on Teffs from patients with CD compared with controls, while its expression in the peripheral blood declined, and its expression in the intestine increased during the course of clinical vedolizumab treatment. Consistently, adhesion of CD Teffs to vascular cell adhesion molecule-1 (VCAM-1) was blocked by inhibition of α4 and α4ß1 in vitro. Moreover, in vivo homing of CD Teffs to the ileum was reduced by inhibition of α4 and α4ß1 integrins, but not α4ß7 integrins. CONCLUSIONS: Our findings suggest that Teff cell homing to the ileum through the axis α4ß1-VCAM-1 is an essential and nonredundant pathway in CD in vivo, possibly affecting efficacy of clinical treatment with antiadhesion compounds.


Assuntos
Doença de Crohn/imunologia , Íleo/imunologia , Integrina alfa4beta1/imunologia , Receptores de Retorno de Linfócitos/imunologia , Linfócitos T/imunologia , Adulto , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Moléculas de Adesão Celular , Movimento Celular , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Feminino , Citometria de Fluxo , Fármacos Gastrointestinais/farmacologia , Humanos , Íleo/patologia , Imunoglobulinas/efeitos dos fármacos , Imunoglobulinas/imunologia , Imuno-Histoquímica , Integrina alfa4beta1/efeitos dos fármacos , Masculino , Camundongos , Mucoproteínas/efeitos dos fármacos , Mucoproteínas/imunologia , Receptores de Retorno de Linfócitos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/imunologia
19.
Cell Mol Life Sci ; 74(5): 803-826, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27624395

RESUMO

Due to the fact that chronic inflammation as well as tumorigenesis in the gut is crucially impacted by the fate of intestinal epithelial cells, our article provides a comprehensive overview of the composition, function, regulation and homeostasis of the gut epithelium. In particular, we focus on those aspects which were found to be altered in the context of inflammatory bowel diseases or colorectal cancer and also discuss potential molecular targets for a disease-specific therapeutic intervention.


Assuntos
Doença/genética , Células Epiteliais/metabolismo , Intestinos/citologia , Mutação/genética , Transdução de Sinais/genética , Animais , Humanos , Junções Íntimas/metabolismo
20.
Gut ; 66(11): 1936-1948, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27543429

RESUMO

OBJECTIVE: Therapeutically targeting lymphocyte adhesion is of increasing relevance in IBD. Yet, central aspects of the action of antiadhesion compounds are incompletely understood. We investigated the role of αEß7 and α4ß7 integrins and their blockade by vedolizumab and etrolizumab for trafficking of IBD T lymphocytes in an in vivo model of homing to and retention in the inflamed gut. DESIGN: We explored integrin expression in patients with IBD by flow cytometry and immunohistochemistry, while regulation of integrins was studied in T cell cultures. The functional relevance of integrins was assessed by adhesion assays and a recently established humanised mouse model in dextran sodium sulfate-treated immunodeficient mice. RESULTS: High expression of αEß7 was noted on CD8+ and CD4+ Th9 cells, while α4ß7 was expressed on CD8+, Th2 and Th17 cells. T cell receptor stimulation and transforming growth factor ß were key inducers of αEß7 on human T cells, while butyric acid suppressed αEß7. In comparison to α4ß7 blockade via vedolizumab, blockade of ß7 via etrolizumab surrogate antibody superiorly reduced colonic numbers of CD8+ and Th9 cells in vivo after 3 hours, while no difference was noted after 0.5 hours. AEß7 expression was higher on CD8+ T cells from patients with IBD under vedolizumab therapy. CONCLUSIONS: AEß7 is of key relevance for gut trafficking of IBD CD8+ T cells and CD4+ Th9 cells in vivo and mainly retention might account for this effect. These findings indicate that blockade of αEß7 in addition to α4ß7 may be particularly effective in intestinal disorders with expansion of CD8+ and Th9 cells such as IBD.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Fármacos Gastrointestinais/farmacologia , Doenças Inflamatórias Intestinais/imunologia , Integrinas/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Adulto , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Feminino , Citometria de Fluxo , Fármacos Gastrointestinais/imunologia , Fármacos Gastrointestinais/uso terapêutico , Humanos , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/tratamento farmacológico , Integrinas/imunologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...