Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 337: 111870, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37722506

RESUMO

Ageing in dry chlorophyllous propagules is leaded by photooxidation through the photosynthetic machinery, but why species differ in longevity and the ageing mechanisms of when light and oxygen are absent are unknown. We hypothesize that the cellular antioxidant capacity is key for the inter- and intra-specific differences in the ageing process. We have tested this hypothesis in chlorophyllous spores of two ferns. They were subjected to four different storage regimes resulting from light/dark and normoxia/hypoxia combinations. Lipophilic and hydrophilic antioxidants, reactive oxygen species (ROS), and photosynthetic pigments were analysed in parallel to germination and the recovery of Fv/Fm over a storage period of up to 22-months. We show that light and oxygen accelerate the ageing process, but their mechanisms (ROS, increase, antioxidant capacity decrease, loss of efficiency of the photosystem II, pigment degradation) appear the same under all conditions tested. The end of the asymptomatic phase of longevity, when a sudden drop of germination occurs, seems to be determined by a threshold in the depletion of antioxidants. Our results support the hypothesis that ageing kinetics in dry plant propagules is determined by the antioxidant system, but also suggests an active role of the photosynthetic machinery during ageing, even in darkness and hypoxia.

2.
Plant Sci ; 281: 251-260, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30824058

RESUMO

Fern spores are unicellular structures produced by the sporophyte generation that give rise to the haploid gametophyte. When released from the sporangium, spores are desiccation tolerant (DT) in the royal fern (Osmunda regalis) and contain fully developed chloroplasts. As a consequence, this type of spores is called chlorophyllous spores (CS). Upon transfer to germination conditions, CS initiate a process of imbibition that suppresses DT in 72 h, before the germination starts. In parallel to such change in DT, thylakoids undergo a profound remodelling in composition and function. Firstly, sustained quenching of chlorophyll fluorescence is relaxed, giving rise to photochemically active CS, while lipid composition shifts from that of a resting structure to a metabolically active cell. Basically trigalactolipids decreased in favour of monogalactolipids, with a parallel desaturation of fatty acids. Storage lipids such as triacylglycerol were quickly depleted. These results highlight the importance of the structure of thylakoids lipid as a key to protect membrane integrity during desiccation, together with the saturation of fatty acids and the constitutive chlorophyll quenching to prevent oxidative damage. The CS used here, in which the same cell shifts from DT to sensitive strategy in 72 h, reveal their potential as unicellular models for future studies on DT.


Assuntos
Cloroplastos/metabolismo , Gleiquênias/metabolismo , Esporos/metabolismo , Cloroplastos/fisiologia , Gleiquênias/fisiologia , Germinação/fisiologia , Esporos/fisiologia , Tilacoides/metabolismo , Tilacoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...