Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(30): 6159-6174, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37477987

RESUMO

We investigate the course of an elementary chemical reaction from the perspective of information theory in 3D space through the hypersurface of several information-theoretic (IT) functionals such as disequilibrium (D), Shannon entropy (S), Fisher information (I), and the complexity measures of Fisher-Shannon (FS) and López-Mancini-Calbet (LMC). The probe for the study is the hydrogenic identity abstraction reaction. In order to perform the analysis, the reactivity pattern of the reaction is examined by use of the aforementioned functionals of the single-particle density, which is analyzed in position (r) and momentum (p) spaces. The 3D analyses revealed interesting reactivity patterns in the neighborhood of the intrinsic reaction coordinate (IRC) path, which allow to interpret the reaction mechanism for this reaction in a novel manner. In addition, the chemically interesting regions that have been characterized through the information functionals and their complexity measures are depicted and analyzed in the framework of the three-dimensional structure of the information-theoretical data of a chemical reaction, that is, the reactant/product (R/P) complexes, the transition state (TS), and the ones that are only revealed through IT measures such as the bond-cleavage energy region (BCER), the bond-breaking/forming (B-B/F) region, and the spin-coupling (SC) process. Furthermore, focus has been placed on the diagonal part of the hypersurface of the IT functionals, aside from the IRC path itself, with the purpose of analyzing the dissociation process of the triatomic transition-state complex that has revealed other interesting features of the bond-breaking (B-B) process. In other respects, it is shown throughout the combined analyses of the 3D structure of the IT functionals in conjugated spaces that the chemically significant regions occurring at the onset of the TS are completely characterized by information-theoretic aspects of localizability (S), uniformity (D), and disorder. Further, novel regions of low complexity seem to indicate new boundaries for chemically stable complex molecules. Finally, the study reveals that the chemical reaction occurs at low-complexity regions, where the concurrent phenomena take place: bond-breaking/forming (B-B/F), bond-cleavage energy reservoirs (BCER), spin-coupling (SC), and transition state (TS).

2.
Entropy (Basel) ; 25(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36832733

RESUMO

Both entropy and complexity are central concepts for the understanding and development of Information Theory, playing an essential role in the increasingly numerous applications in a huge diversity of fields [...].

3.
Entropy (Basel) ; 24(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35205526

RESUMO

The discrepancy among one-electron and two-electron densities for diverse N-electron atomss, enclosing neutral systems (with nuclear charge Z=N) and charge-one ions (|N-Z|=1), is quantified by means of mutual information, I, and Quantum Similarity Index, QSI, in the conjugate spaces position/momentum. These differences can be interpreted as a measure of the electron correlation of the system. The analysis is carried out by considering systems with a nuclear charge up to Z=103 and singly charged ions (cations and anions) as far as N=54. The interelectronic correlation, for any given system, is quantified through the comparison of its double-variable electron pair density and the product of the respective one-particle densities. An in-depth study along the Periodic Table reveals the importance, far beyond the weight of the systems considered, of their shell structure.

4.
Chemphyschem ; 17(23): 4003-4010, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27922225

RESUMO

The relative structural location of a selected group of 27 sulfonamide-like molecules in a chemical space defined by three information theory quantities (Shannon entropy, Fisher information, and disequilibrium) is discussed. This group is composed of 15 active bacteriostatic molecules, 11 theoretically designed ones, and para-aminobenzoic acid. This endeavor allows molecules that share common chemical properties through the molecular backbone, but with significant differences in the identity of the chemical substituents, which might result in bacteriostatic activity, to be structurally classified and characterized. This is performed by quantifying the structural changes on the electron density distribution due to different functional groups and number of electrons. The macroscopic molecular features are described by means of the entropy-like notions of spatial electronic delocalization, order, and uniformity. Hence, an information theory three-dimensional space (IT-3D) emerges that allows molecules with common properties to be gathered. This space witnesses the biological activity of the sulfonamides. Some structural aspects and information theory properties can be associated, as a result of the IT-3D chemical space, with the bacteriostatic activity of these molecules. Most interesting is that the active bacteriostatic molecules are more similar to para-aminobenzoic acid than to the theoretically designed analogues.


Assuntos
Antibacterianos/química , Teoria Quântica , Sulfonamidas/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Entropia , Testes de Sensibilidade Microbiana , Sulfonamidas/farmacologia
5.
Chemphyschem ; 16(12): 2571-81, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26175003

RESUMO

In this work we undertake a pioneer information-theoretical analysis of 18 selected amino acids extracted from a natural protein, bacteriorhodopsin (1C3W). The conformational structures of each amino acid are analyzed by use of various quantum chemistry methodologies at high levels of theory: HF, M062X and CISD(Full). The Shannon entropy, Fisher information and disequilibrium are determined to grasp the spatial spreading features of delocalizability, order and uniformity of the optimized structures. These three entropic measures uniquely characterize all amino acids through a predominant information-theoretic quality scheme (PIQS), which gathers all chemical families by means of three major spreading features: delocalization, narrowness and uniformity. This scheme recognizes four major chemical families: aliphatic (delocalized), aromatic (delocalized), electro-attractive (narrowed) and tiny (uniform). All chemical families recognized by the existing energy-based classifications are embraced by this entropic scheme. Finally, novel chemical patterns are shown in the information planes associated with the PIQS entropic measures.


Assuntos
Aminoácidos Essenciais/química , Teoria da Informação , Bacteriorodopsinas/química
6.
Phys Chem Chem Phys ; 12(26): 7108-16, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20473427

RESUMO

The Fisher-Shannon and LMC shape complexities and the Shannon-disequilibrium, Fisher-Shannon and Fisher-disequilibrium information planes, which consist of two localization-delocalization factors, are computed in both position and momentum spaces for the one-particle densities of 90 selected molecules of various chemical types, at the CISD/6-311++G(3df,2p) level of theory. We found that while the two measures of complexity show general trends only, the localization-delocalization planes clearly exhibit chemically significant patterns. Several molecular properties (energy, ionization potential, total dipole moment, hardness, electrophilicity) are analyzed and used to interpret and understand the chemical nature of the composite information-theoretic measures above mentioned. Our results show that these measures detect not only randomness or localization but also pattern and organization.


Assuntos
Íons/química , Elétrons , Modelos Químicos , Modelos Moleculares , Termodinâmica
7.
J Phys Chem A ; 114(4): 1906-16, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20050637

RESUMO

Information-theoretic measures are employed to describe the course of a three-center chemical reaction in terms of detecting the transition state and the stationary points unfolding the bond-forming and bond-breaking regions which are not revealed in the energy profile. The information entropy profiles for the selected reactions are generated by following the intrinsic-reaction-coordinate (IRC) path calculated at the MP2 level of theory from which Shannon entropies in position and momentum spaces at the QCISD(T)/6-311++G(3df,2p) level are determined. Several complementary reactivity descriptors are also determined, such as the dipole moment, the molecular electrostatic potential (MEP) obtained through a multipole expansion (DMA), the atomic charges and electric potentials fitted to the MEP, the hardness and softness DFT descriptors, and several geometrical parameters which support the information-theoretic analysis. New density-based structures related to the bond-forming and bond-breaking regions are proposed. Our results support the concept of a continuum of transient of Zewail and Polanyi for the transition state rather than a single state, which is also in agreement with reaction-force analyses.

8.
J Chem Theory Comput ; 6(1): 145-54, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26614327

RESUMO

The utility of the Fisher information measure is analyzed to detect the transition state, the stationary points of a chemical reaction, and the bond breaking/forming regions of elementary reactions such as the simplest hydrogen abstraction and the identity SN2 exchange ones. This is performed by following the intrinsic reaction path calculated at the MP2 and QCISD(T) levels of theory with a 6-311++G(3df, 2p) basis set. Selected descriptors of both position and momentum space densities are utilized to support the observations, such as the molecular electrostatic potential (MEP), the hardness, the dipole moment, along with geometrical parameters. Our results support the concept of a continuum of transient of Zewail and Polanyi for the transition state rather than a single state, which is also in agreement with reaction force analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...