Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 349: 123911, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604308

RESUMO

The rising trend of plastic production in last years and the inadequate disposal of related waste has raised concerns regarding microplastic-related environmental issues. Microplastic particles disperse by means of transport and deposition processes to different ecosystems and enter food chains. In this paper, atmospheric deposition and foliage samples of two species (i.e., Hedera helix and Photinia glabra) were collected and analysed for the quantity and identity of microplastics (MPs). A preliminary methodology to treat foliage samples and subsequently identify MPs using a quantum cascade laser IR spectrophotometer is presented. The treatment of airborne samples involved filtration, mild digestion, concentration, and transfer onto reflective slides whereas that for foliage involved washing, concentration, and transference of putative MPs onto reflective slides. Fibers and fragments were differentiated according to their physical features (size, width, height, etc.) and calculating derived characteristics (namely, circularity and solidity). The preliminary results obtained suggest a good agreement between atmospheric-deposited and foliage-retained MPs, showing the capability of leaves to act as passive samplers for environmental monitoring.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Microplásticos , Folhas de Planta , Monitoramento Ambiental/métodos , Microplásticos/análise , Folhas de Planta/química , Poluentes Atmosféricos/análise , Hedera/química , Tamanho da Partícula , Atmosfera/química , Plásticos/análise
2.
Sci Total Environ ; 913: 169678, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159775

RESUMO

The number of studies dealing with airborne microplastics (MPs) is increasing but sampling and sample treatment are not standardized, yet. Here, a fast and reliable method to characterize MPs is presented. It involves the study of two passive sampling devices to collect atmospheric bulk deposition (wet and dry deposition) and three digestion methods (two alkaline-oxidative and an oxidative) to treat the samples. The alkaline-oxidative method based on KOH and NaClO was selected for a mild organic matrix digestion. In addition, some operational parameters of a high-throughput quantum cascade laser-based infrared device (LDIR) were optimized: an effective automatic tiered approach to differentiate fibres from particles (>90 % success in validation) and a criterion to establish positive matches when comparing an unknown spectrum against the spectral database (proposed match index > 0.85). The procedural analytical recoveries were very good for particles (82-90 %) and slightly lower for fibres (62-73 %). Finally, the amount and type of MPs deposited at a sub-urban area NW Spain were evaluated. Most common polymers were Polyethylene (PE), Polypropylene (PP) and Polyethylene terephthalate (PET). The deposition rates ranged 98-1220 MP/m2/day, ca. 1.7 % of the total collected particles. More than 50 % of the total MPs deposited were in the 20-50 µm size range, whereas fibres were mostly in the 50-500 µm size range.

3.
Mar Pollut Bull ; 192: 115075, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269701

RESUMO

This study identified and quantified microplastics in the Bay of Asunción, Paraguay, and its main tributaries. Surface water samples were sieved in duplicate at six locations using stainless-steel sieves (0.3-4.75 mm range), digested employing the Fenton's reaction (Fe-catalysed H2O2 digestion), and floated using NaCl and NaI. Particles were inspected using a microscope and characterized by IR spectrometry. Microplastics were found in all samples; more abundant (p < 0.05) in water from the bay (13.2 ± 13.4 items·m-3) than from the tributaries (1.0 ± 0.5 items·m-3). Most microplastics were common polymers and their abundance was in the order polypropylene > high-density polyethylene > low-density polyethylene, transparent and white. The results were similar to other regional studies and suggested that their main source was single-use packaging, disposed inadequately due to poor garbage collection.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Água/análise , Baías/química , Paraguai , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polietileno/análise
4.
Mar Pollut Bull ; 183: 114061, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055080

RESUMO

Besides being food and a refuge to marine species, macroalgae are a powerful and renewable economic resource. However, they may introduce microplastics (MPs) in the trophic chain. We developed a reliable analytical method to characterize and quantify MPs in common and edible macroalgae. Several digestion methods and filters, along with various measurement options, were studied. A new enzymatic-oxidative protocol with a unique final filtration was selected and validated with a mixture of 5 commercial macroalgae (Undaria pinnatifida spp, Porphyra spp, Ulva spp, Laminaria ochroleuca and Himanthalia elongate). Further, it was shown that washing the macroalgae to release MPs is suboptimal and the potential adhesion of MPs to macroalgae was evaluated. A filter subsampling strategy that scans 33.64 % of its surface reduced the time required to characterize <70 µm particles and fibres directly on the 47 mm diameter filter using an IR microscope (1 sample/day).


Assuntos
Alga Marinha , Poluentes Químicos da Água , Digestão , Microplásticos , Estresse Oxidativo , Plásticos , Poluentes Químicos da Água/análise
5.
Mar Pollut Bull ; 178: 113591, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35349866

RESUMO

Societal and environmental concern due to frequent reports of microplastics in fish stomachs raised as they may accumulate along the trophic chain. The request for analysing microplastics in fish stresses two major analytical issues: sample treatment and final characterization. The, so far, workhorse for chemical characterization is infrared spectroscopy which is time-consuming. Here, a quantum cascade laser-based device is used to accelerate the characterization stage. Its novelty poses new challenges for sample processing and particle handling because the unknown particles must be transferred to a reflective slide. In this study, three sample digestion protocols (alkaline-oxidative with H2O2, and alkaline-oxidative with NaClO and enzymatic-oxidative) and three different procedures to transfer the filter cake to reflective slides are compared. A simplified enzymatic-oxidative digestion (validated through an interlaboratory exercise) combined with a Syncore® automatic evaporation system and a Laser Direct Infrared Imaging (LDIR) device is proposed first time as a reliable and relatively fast method to treat gastrointestinal tracts of fish. Analytical recoveries were studied using samples of Scomber scombrus and they were ca. 100% for big -i.e., >500 µm- and ca. 90% for medium -i.e., 200-300 µm- particles and ca. 75% for 10 µm thick fibres.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Peixes , Trato Gastrointestinal/química , Peróxido de Hidrogênio , Lasers Semicondutores , Plásticos/análise , Poluentes Químicos da Água/análise
6.
Mar Pollut Bull ; 168: 112379, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33895395

RESUMO

Microplastics (MPs) affect plankton (a basis of the trophic chain) and planktivorous fish can ingest them through food confusion or by trophic transmission. Consensus to determine MPs in plankton is lacking and, so, three digestion treatments were evaluated: Alkaline (potassium hydroxide) and enzymatic (protease plus lipase) digestions, both combined with a hydrogen peroxide stage; and an oxidative method using a surfactant (sodium dodecyl sulfate) plus hydrogen peroxide. The alkaline method using potassium hydroxide was found to damage polystyrene. MPs were identified with a stereomicroscope and characterized by reflectance infrared microscopy in semi-automatic mode (using dedicated multi-well aluminium plates). Analytical recoveries for polypropylene, polystyrene, polyethylene, polyamide, polyvinyl chloride and polyethylene terephthalate were higher than 75%, 82% and 83% for the alkaline, enzymatic and oxidative treatments, respectively. The enzymatic method was successfully validated in a European interlaboratory exercise and the oxidative method was demonstrated to be a reliable, fast and cheaper alternative.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Plâncton , Plásticos , Poliestirenos/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...