Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 665: 968-981, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30790765

RESUMO

Obtaining representative hydrometric values is essential for characterizing extreme events, hydrological dynamics and detecting possible changes on the long-term hydrology. Reliability of streamflow data requires a temporal continuity and a maintenance of the gauging stations, which data are affected by epistemic and random sources of error. An assessment of discharge meterings' and stage-discharge rating curves' uncertainties were carried out by comparing the accuracy of the measuring instruments of two different hydrometric networks (i.e., one analogical and one digital) established in the same river location at the Mediterranean island of Mallorca. Furthermore, the effects of such uncertainties were assessed on the hydrological dynamics, considering the significant global change impacts beset this island. Evaluation was developed at four representative gauging stations of the hydrographic network with analogic (≈40 years) and digital (≈10 years) data series. The study revealed that the largest source of uncertainty in the analogical (28 to 274%) and in the digital (17-37%) networks were the stage-discharge rating curves. Their impact on the water resources was also evaluated at the event and annual scales, resulting in an average difference of water yields of 183% and 142% respectively. Such improvement on the comprehension of hydrometric networks uncertainties will dramatically benefit the interpretation of the long-term streamflow by providing better insights into the hydrologic and flood hazard planning, management and modelling.

2.
Sci Total Environ ; 540: 101-13, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26372613

RESUMO

Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam.

3.
Sci Total Environ ; 508: 101-14, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25474167

RESUMO

River regulation by dams modifies flow regimes, interrupts the transfer of sediment through channel networks, and alters downstream bed dynamics, altogether affecting channel form and processes. So far, most studies on the geomorphic impacts of dams are restricted to single rivers, or even single river stretches. In this paper we analyse the geomorphic status of 74 river sites distributed across four large basins in the Iberian Peninsula (i.e. 47 sites located downstream of dams). For this purpose, we combine field data with hydrological data available from water agencies, and analyse historical (1970) and current aerial photographs. In particular, we have developed a Geomorphic Status (GS) index that allows us to assess the physical structure of a given channel reach and its change through time. The GS encompasses a determination of changes in sedimentary units, sediment availability, bar stability and channel flow capacity. Sites are statistically grouped in four clusters based on contrasted physical and climate characteristics. Results emphasise that regulation changes river's flow regime with a generalized reduction of the magnitude and frequency of floods (thus flow competence). This, in addition to the decrease downstream sediment supply, results in the loss of active bars as they are encroached by vegetation, to the point that only reaches with little or no regulation maintain exposed sedimentary deposits. The GS of regulated river reaches is negatively correlated with magnitude of the impoundment (regulation). Heavily impacted reaches present channel stabilization and, in contrast to the hydrological response, the distance and number of tributaries do not reverse the geomorphic impact of the dams. Stabilization limits river dynamics and may contribute to the environmental degradation of the fluvial ecosystem. Overall, results describe the degree of geomorphological alteration experienced by representative Iberian rivers mostly because of regulation, challenging the successful long-term implementation of river basin management programmes.


Assuntos
Hidrologia , Rios/química , Ecossistema , Inundações , Espanha , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...