Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304885, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900815

RESUMO

Same-sex sexual behaviour (SSSB) occurs in most animal clades, but published reports are largely concentrated in a few taxa. Thus, there remains a paucity of published reports for most mammalian species. We conducted a cross-sectional expert survey to better understand the underlying reasons for the lack of publications on this topic. Most respondents researched Primates (83.6%, N = 61), while the rest studied Carnivora (6.9%, N = 5), Rodentia (4.1%, N = 3), Artiodactyla (2.7%, N = 2), and Proboscidea (2.7%, N = 2). Most respondents (76.7%, N = 56) had observed SSSB in their study species, but only 48.2% (N = 27) collected data on SSSB, and few (18.5%, N = 5) had published papers on SSSB. Of the unique species identified as engaging in SSSB in the survey, 38.6% (N = 17) have no existing reports of SSSB to the knowledge of the authors. In both the survey questions and freeform responses, most respondents indicated that their lack of data collection or publication on SSSB was because the behaviours were rare, or because it was not a research priority of their lab. No respondents reported discomfort or sociopolitical concerns at their university or field site as a reason for why they did not collect data or publish on SSSB. Multiple logistic regressions were performed to assess whether taxa studied, education level, or identification within the LGBTQ+ community predicted observing, collecting data on, or publishing on SSSB, but none of these variables were significant predictors. These results provide preliminary evidence that SSSB occurs more frequently than what is available in the published record and suggest that this may be due to a publishing bias against anecdotal evidence.


Assuntos
Mamíferos , Animais , Masculino , Feminino , Inquéritos e Questionários , Mamíferos/fisiologia , Estudos Transversais , Humanos , Comportamento Sexual Animal/fisiologia , Homossexualidade Masculina/psicologia , Homossexualidade Masculina/estatística & dados numéricos
2.
Anat Rec (Hoboken) ; 307(6): 1995-2006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38465830

RESUMO

Dental caries is one of the most common diseases afflicting modern humans and occurs in both living and extinct non-human primates, as well as other mammalian species. Compared to other primates, less is known about the etiology or frequency of caries among the Strepsirrhini. Given the link between caries and diet, caries frequency may be informative about the dietary ecology of a given animal. Understanding rates of caries in wild populations is also critical to assessing dental health in captive populations. Here, we examine caries frequency in a sample of 36 extant strepsirrhine species (n = 316 individuals) using odontological collections of wild-, non-captive animals housed at the American Museum of Natural History by counting the number of specimens characterized by the disease. Additionally, in the context of studying caries lesions in strepsirrhines, case studies were also conducted to test if similar lesions were found in their fossil relatives. In particular, two fossil strepsirrhine species were analyzed: the earliest Late Eocene Karanisia clarki, and the subfossil lemur Megaladapis madagascariensis. Our results suggest that caries affects 13.92% of the extant individuals we examined. The frugivorous and folivorous taxa were characterized by the highest overall frequency of caries, whereas the insectivores, gummivores, and omnivores had much lower caries frequencies. Our results suggest that caries may be common among wild populations of strepsirrhines, and in fact is more prevalent than in many catarrhines and platyrrhines. These findings have important implications for understanding caries, diet, and health in living and fossil taxa.


Assuntos
Cárie Dentária , Dieta , Fósseis , Strepsirhini , Animais , Cárie Dentária/epidemiologia
3.
Ecol Evol ; 13(3): e9890, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36942029

RESUMO

The structure of the bony labyrinth is highly informative with respect to locomotor agility (semicircular canals [SCC]) and hearing sensitivity (cochlear and oval windows). Here, we reconstructed the agility and hearing sensitivity of the stem lagomorph Megalagus turgidus from the early Oligocene of the Brule Formation of Nebraska (USA). Megalagus has proportionally smaller SCCs with respect to its body mass compared with most extant leporids but within the modern range of variability, suggesting that it was less agile than most of its modern relatives. A level of agility for Megalagus within the range of modern rabbits is consistent with the evidence from postcranial elements. The hearing sensitivity for Megalagus is in the range of extant lagomorphs for both low- and high-frequency sounds. Our data show that by the early Oligocene stem lagomorphs had already attained fundamentally rabbit-like hearing sensitivity and locomotor behavior, even though Megalagus was not a particularly agile lagomorph. This is likely because Megalagus was more of a woodland dweller than an open-habitat runner. The study of sensory evolution in Lagomorpha is practically unknown, and these results provide first advances in understanding the primitive stages for the order and how the earliest members of this clade perceived their environment.

4.
Sci Rep ; 11(1): 11543, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078948

RESUMO

Ischyromyids are a group of large rodents with the earliest fossil record known from the late Paleocene (Clarkforkian) of North America; they are considered the earliest fossil representatives of Rodentia of modern aspect. Ischyromyids dominated early Paleogene small-mammal assemblages of North America and in the latest Paleocene migrated to western Europe and to Asia; in the latter they survived only to the beginning of the late Eocene, but were never abundant. Here we describe for the first time the calcanei of ischyromyids from the early middle Eocene of the Erlian Basin in Nei Mongol, northern China. These calcanei document the existence of three species. The morphology of the studied tarsal bones overall suggests ambulatory locomotion for these animals ('slow cursors'), similar to that of the coypu and porcupines, but one form shows more marked cursorial capabilities. These differences show that Chinese ischyromyids, although rare, had attained greater taxonomic diversity by the middle Eocene in Nei Mongol than estimated from dental remains. We also address the question of the morphological and ecological divergence of these ischyromyids in relation to their North American counterparts, as well as the issue of a direct dispersal route from North America to Asia in the early Eocene.


Assuntos
Biodiversidade , Fósseis , Roedores/anatomia & histologia , Ossos do Tarso/anatomia & histologia , Animais , Evolução Biológica , China
5.
Proc Biol Sci ; 287(1929): 20200665, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32576117

RESUMO

Early lagomorphs are central to our understanding of how the brain evolved in Glires (rodents, lagomorphs and their kin) from basal members of Euarchontoglires (Glires + Euarchonta, the latter grouping primates, treeshrews, and colugos). Here, we report the first virtual endocast of the fossil lagomorph Megalagus turgidus, from the Orella Member of the Brule Formation, early Oligocene, Nebraska, USA. The specimen represents one of the oldest nearly complete lagomorph skulls known. Primitive aspects of the endocranial morphology in Megalagus include large olfactory bulbs, exposure of the midbrain, a small neocortex and a relatively low encephalization quotient. Overall, this suggests a brain morphology closer to that of other basal members of Euarchontoglires (e.g. plesiadapiforms and ischyromyid rodents) than to that of living lagomorphs. However, the well-developed petrosal lobules in Megalagus, comparable to the condition in modern lagomorphs, suggest early specialization in that order for the stabilization of eye movements necessary for accurate visual tracking. Our study sheds new light on the reconstructed morphology of the ancestral brain in Euarchontoglires and fills a critical gap in the understanding of palaeoneuroanatomy of this major group of placental mammals.


Assuntos
Encéfalo/anatomia & histologia , Eutérios , Crânio/anatomia & histologia , Animais , Evolução Biológica , Fósseis , Lagomorpha , Bulbo Olfatório , Filogenia , Primatas , Roedores
6.
Anat Rec (Hoboken) ; 303(2): 265-281, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548805

RESUMO

Exudativory, the consumption of gums, is an obligate or a facultative dietary niche for some primates and marsupials. Exudativory has been cited as a dietary niche that may have been present in early primates, so finding a dental signature for exudativory is highly desirable. The present study combines exudativorous lorisoids (galagos and lorises) into one sample to compare to closely related, non-exudativorous lorisoids to search for a consistent dental signature of exudativory. Linear measurements were taken from the toothcomb, P2 , M3 , upper canine, and P2 from skulls of 295 adult galagids and lorisids. Also, differential distribution of enamel on the anterior teeth was qualitatively investigated as a dental signature for gouging (a behavior that facilitates some exudativory) by micro-CT scanning one specimen each from two gougers, Nycticebus coucang and Callithrix jacchus, and two non-gougers, Perodicticus potto, and Saguinus fuscicollis. Non-primate gouging mammals, the vampire bat Desmodus rotundus and the sugar glider Petaurus breviceps, were compared to non-gouging relatives. Statistical analysis revealed that exudativorous galagos and lorises had significantly (P < 0.05) reduced M3 relative to non-exudativorous galagos and lorises. While the sample sizes for assessing enamel thickness were small, preliminary results show that gouging primates and non-primate mammals have reduced lingual enamel thickness on the anterior dentition compared to non-gouging relatives. We suggest that reduction of mastication, and, therefore, M3 dimensions are a likely dental signature for exudativory in Primates. While broader samples are needed to statistically confirm, differential distribution of enamel in the anterior dentition may also be a signature of exudativory. Anat Rec, 2019. © 2018 Wiley Periodicals, Inc. Anat Rec, 303:265-281, 2020. © 2018 American Association for Anatomy.


Assuntos
Adaptação Fisiológica/fisiologia , Comportamento Alimentar , Primatas/anatomia & histologia , Dente/anatomia & histologia , Animais , Dieta
7.
Folia Primatol (Basel) ; 91(4): 365-384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31618747

RESUMO

Gummivory poses unique challenges to the dentition as gum acquisition may often require that the anterior teeth be adapted to retain a sharp edge and to resist loading because they sometimes must penetrate a highly obdurate substrate during gum extraction by means of gouging or scraping. It has been observed previously that the enamel on the labial surface of the teeth used for extraction is thicker relative to that on the lingual surface in taxa that extract gums, while enamel is more evenly distributed in the anterior teeth of taxa that do not regularly engage in extractive behaviors. This study presents a quantitative methodology for measuring the distribution of labial versus lingual enamel thickness among primate and marsupial taxa in the context of gummivory. Computed microtomography scans of 15 specimens representing 14 taxa were analyzed. Ten measurements were taken at 20% intervals starting from the base of the crown of the extractive tooth to the tip of the cutting edge across the lingual and labial enamel. A method for including worn or broken teeth is also presented. Mann-Whitney U tests, canonical variates analysis, and between-group principal components analysis were used to examine variation in enamel thickness across taxa. Our results suggest that the differential distribution of enamel thickness in the anterior dentition can serve as a signal for gouging behavior; this methodology distinguishes between gougers, scrapers, and nonextractive gummivores. Gouging taxa are characterized by significantly thicker labial enamel relative to the lingual enamel, particularly towards the crown tip. Examination of enamel thickness patterning in these taxa permits a better understanding of the adaptations for the extraction of gums in extant taxa and offers the potential to test hypotheses concerning the dietary adaptations of fossil taxa.


Assuntos
Callithrix/anatomia & histologia , Esmalte Dentário/anatomia & histologia , Comportamento Alimentar , Lorisidae/anatomia & histologia , Marsupiais/anatomia & histologia , Saguinus/anatomia & histologia , Microtomografia por Raio-X/veterinária , Animais , Callithrix/fisiologia , Dieta/veterinária , Lorisidae/fisiologia , Marsupiais/fisiologia , Saguinus/fisiologia , Microtomografia por Raio-X/métodos
8.
Sci Rep ; 8(1): 13955, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224674

RESUMO

Anagalidae are extinct primitive Euarchontoglires from Asia, regarded as relatively closely related to basal Glires. So far, the group has been reported only from China and stratigraphically spans from the early Paleocene to the latest Eocene/earliest Oligocene. Anagalids are characterized by a relatively full dental formula featuring slightly enlarged semi-procumbent incisors, prominent canines, and tall cheek teeth with usually heavily worn crowns, indicative of an abrasive diet. Here we report a new genus and species from the late Eocene Ergilin Dzo Formation in southern Mongolia. The first non-Chinese anagalid is also the northernmost record of the family. Zofiagale ergilinensis gen. and sp.nov. is remarkable for its relatively small size (comparable only to the Paleocene genera Huaiyangale and Stenanagale), lack of P1, and molariform teeth showing almost no wear, suggesting a different diet than most Anagalidae. Furthermore, its molars display a strong buccal cingulum, a character in anagalids shared only with Wanogale. Our phylogenetic analysis of representatives of all anagalid genera based on 82 dental characters places Anagale and Anaptogale as the most basal lineages and clusters Zofiagale gen. nov. together with Qipania and Hsiuannania. These results suggest three independent northward dispersal events within the family in the late Eocene.


Assuntos
Mamíferos/genética , Animais , Ásia , Dieta , Eutérios/genética , Fósseis , Mongólia , Filogenia , Dente/anatomia & histologia
9.
Evol Anthropol ; 26(2): 74-94, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28429568

RESUMO

Very shortly after the disappearance of the non-avian dinosaurs, the first mammals that had features similar to those of primates started appearing. These first primitive forms went on to spawn a rich diversity of plesiadapiforms, often referred to as archaic primates. Like many living primates, plesiadapiforms were small arboreal animals that generally ate fruit, insects, and, occasionally, leaves. However, this group lacked several diagnostic features of euprimates. They also had extraordinarily diverse specializations, represented in eleven families and more than 140 species, which, in some cases, were like nothing seen since in the primate order. Plesiadapiforms are known from all three Northern continents, with representatives that persisted until at least 37 million years ago. In this article we provide a summary of the incredible diversity of plesiadapiform morphology and adaptations, reviewing our knowledge of all eleven families. We also discuss the challenges that remain in our understanding of their ecology and evolution.


Assuntos
Evolução Biológica , Fósseis , Primatas , Animais , Antropologia Física , Osso e Ossos/anatomia & histologia , Filogenia , Primatas/anatomia & histologia , Primatas/classificação , Dente/anatomia & histologia
10.
R Soc Open Sci ; 2(9): 150340, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26473056

RESUMO

Darwinius is an adapoid primate from the Eocene of Germany, and its only known specimen represents the most complete fossil primate ever found. Its describers hypothesized a close relationship to Anthropoidea, and using a Saimiri model estimated its age at death. This study reconstructs the ancestral permanent dental eruption sequences for basal Euprimates, Haplorhini, Anthropoidea, and stem and crown Strepsirrhini. The results show that the ancestral sequences for the basal euprimate, haplorhine and stem strepsirrhine are identical, and similar to that of Darwinius. However, Darwinius differs from anthropoids by exhibiting early development of the lower third molars relative to the lower third and fourth premolars. The eruption of the lower second premolar marks the point of interruption of the sequence in Darwinius. The anthropoid Saimiri as a model is therefore problematic because it exhibits a delayed eruption of P2. Here, an alternative strepsirrhine model based on Eulemur and Varecia is presented. Our proposed model shows an older age at death than previously suggested (1.05-1.14 years), while the range for adult weight is entirely below the range proposed previously. This alternative model is more consistent with hypotheses supporting a stronger relationship between adapoids and strepsirrhines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...