Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 670: 658-675, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772811

RESUMO

To understand the complex interplay of topography and surface chemistry in wetting, fundamental studies investigating both parameters are needed. Due to the sensitivity of wetting to miniscule changes in one of the parameters it is imperative to precisely control the experimental approach. A profound understanding of their influence on wetting facilitates a tailored design of surfaces with unique functionality. We present a multi-step study: The influence of surface chemistry is analyzed by determining the adsorption of volatile carbonous species (A) and by sputter deposition of metallic copper and copper oxides on flat copper substrates (B). A precise surface topography is created by laser processing. Isotropic topography is created by ps laser processing (C), and hierarchical anisotropic line patterns are produced by direct laser interference patterning (DLIP) with different pulse durations (D). Our results reveal that the long-term wetting response of polished copper surfaces stabilizes with time despite ongoing accumulation of hydrocarbons and is dominated by this adsorption layer over the oxide state of the substrate (Cu, CuO, Cu2O). The surfaces' wetting response can be precisely tuned by tailoring the topography via laser processing. The sub-pattern morphology of primary line-like patterns showed great impact on the static contact angle, wetting anisotropy, and water adhesion. An increased roughness inside the pattern valleys combined with a minor roughness on pattern peaks favors air-inclusions, isotropic hydrophobicity, and low water adhesion. Increasing depth of the primary topography can also induce air-inclusions despite increasing peak roughness while time dependent wetting transitions were observed.

2.
Langmuir ; 39(34): 12020-12031, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37578946

RESUMO

Tuning of the wetting behavior of metallic surfaces by chemical and topographical modification has become popular in recent years. Still, there is a lack in the understanding of fundamental relations between intrinsic properties of the material and its resulting water contact angle. It is widely accepted in the literature that transitions from a hydrophilic to increasingly hydrophobic behavior upon exposure to ambient conditions happen due to the adsorption of adventitious hydrocarbons. In order to investigate the role of metallic bulk microstructure in the wetting behavior and its transition properties, we created three different grain sizes and deformation states on copper by preparation combined with heat treatment. We found that for freshly prepared surfaces, differences in the wetting behavior show a higher static contact angle for mechanically prepared surfaces with a fine-crystalline deformation layer compared to the electropolished cold-rolled copper sheet and the annealed defect-free coarse-grained surface. Already after five days of storage time, most of this difference vanishes, and all surfaces show a wetting behavior with a contact angle in the range of 97-100° after 30 days. Though long-term wetting behavior seems largely independent of microstructure, correlated XPS measurements showed an increased adsorption of organic contaminants of the mechanically polished surface. Preparation-induced near-surface defects seem to accelerate adsorption, while varying grain size and slight bulk deformation from rolling processes did not show significant effects. Complex relations between the amount of adsorbed carbon and the polarity of the adsorption film were found to depend on the sample age and influence the contact angle.

3.
Sci Rep ; 12(1): 19389, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371459

RESUMO

Static contact angle measurements are one of the most popular methods to analyze the wetting behavior of materials of any kind. Although this method is readily applicable without the need of sophisticated machinery, the results obtained for the very same material may vary strongly. The sensitivity of the measurement against environmental conditions, sample preparation and measurement conduction is a main factor for inconsistent results. Since often no detailed measurement protocols exist alongside published data, contact angle values as well as elaborated wetting studies do not allow for any comparison. This paper therefore aims to discuss possible influences on static contact angle measurements and to experimentally demonstrate the extent of these effects. Sample storage conditions, cleaning procedures, droplet volume, water grade and droplet application as well as the influence of evaporation on the static contact angle are investigated in detail. Especially sample storage led to differences in the contact angle up to 60%. Depending on the wetting state, evaporation can reduce the contact angle by 30-50% within 10 min in dry atmospheres. Therefore, this paper reviews an existing approach for a climate chamber and introduces a new measuring setup based on these results. It allows for the observation of the wetting behavior for several minutes by successfully suppressing evaporation without negatively affecting the surface prior to measurement by exposure to high humidity environments.

4.
Langmuir ; 38(49): 15209-15219, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36449450

RESUMO

Copper is extensively used in a wide range of industrial and daily-life applications, varying from heat exchangers to electrical wiring. Although it is protected from oxidation by its native oxide layer, when subjected to harsh environmental conditions─such as in coastal regions─this metal can rapidly degrade. Therefore, in this study, we analyze the potential use of carbon nanoparticle coatings as protective barriers due to their intrinsic hydrophobic wetting behavior. The nanocarbon coatings were produced via electrophoretic deposition on Cu platelets and characterized via scanning electron microscopy, confocal laser scanning microscopy, and sessile drop test; the latter being the primary focus since it provides insights into the wetting behavior of the produced coatings. Among the measured coatings, graphite flakes, graphene oxide, and carbon nanotube (CNT) coatings showed superhydrophobic behavior. Based on their wetting behavior, and specifically for electrical applications, CNT coatings showed the most promising results since these coatings do not significantly impact the substrate's electrical conductivity. Although CNT agglomerates do not affect the wetting behavior of the attained coatings, the coating's thickness plays an important role. Therefore, to completely coat the substrate, the CNT coating should be sufficiently thick─above approximately 1 µm.

5.
J Colloid Interface Sci ; 609: 645-656, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34839911

RESUMO

HYPOTHESIS: Wetting characterization and the production of engineered surfaces showing distinct contact angles or spreading behavior is of major importance for many industrial and scientific applications. As chemical composition plays a major role in the wetting behavior of flat samples, wettability, capillary forces and resulting droplet spreading on anisotropic surface patterns are expected to be highly dependent on surface chemistry as well. EXPERIMENTS: To gain understanding of the fundamental principles of the interplay between surface topography and surface chemistry regarding water wettability, anisotropic line patterns were produced on steel samples in a direct laser writing process. Homogeneous surface coatings allowed for a chemical masking of the laser patterns and therewith the identification of the influence of surface chemistry on static contact angles and wetting anisotropy. FINDINGS: While a carbon coating leads to pronounced wettability and spreading along the topographic anisotropy, an inert gold-palladium coating can fully suppress anisotropic droplet spreading. Model calculations show that an amorphous carbon coating leads to Wenzel wetting while the gold-palladium coating causes air inclusions between the water and the surface in the Cassie-Baxter wetting state. Only in combination with the right chemical composition of the surface, directional patterns show their potential of anisotropic wetting behavior.


Assuntos
Água , Propriedades de Superfície , Molhabilidade
6.
Langmuir ; 36(45): 13415-13425, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33141584

RESUMO

Surface patterning in the micro- and nanometer-range by means of pulsed laser interference has repeatedly proven to be a versatile tool for surface functionalization. With these techniques, however, the surface is often changed not only in terms of morphology but also in terms of surface chemistry. In this study, we present an in-depth investigation of the chemical surface modification occurring during surface patterning of copper by ultrashort pulsed direct laser interference patterning (USP-DLIP). A multimethod approach of parallel analysis using visualizing, topography-sensitive, and spectroscopic techniques allowed a detailed quantification of surface morphology as well as composition and distribution of surface chemistry related to both processing and atmospheric aging. The investigations revealed a heterogeneous surface composition separated in peak and valley regions predominantly consisting of Cu2O, as well as superficial agglomerations of CuO and carbon species. The evaluation was supported by a modeling approach for the quantification of XPS results in relation to heterogeneous surface composition, which was observed by means of a combination of different spectroscopic techniques. The overall results provide a detailed understanding of the chemical and topographical surface modification during USP-DLIP, which allows a more targeted use of this technology for surface functionalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...