Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190516, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32892726

RESUMO

The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m-2 yr-1 during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m-2 yr-1 with a median value of -59 g C m-2 yr-1. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Assuntos
Carbono/análise , Mudança Climática , Secas , Solo/química , Água/análise , Ciclo do Carbono , Florestas , Conceitos Meteorológicos , Países Escandinavos e Nórdicos , Estações do Ano
3.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32006032

RESUMO

Although ongoing research has revealed some of the main drivers behind global spatial patterns of microbial communities, spatio-temporal dynamics of these communities still remain largely unexplored. Here, we investigate spatio-temporal variability of both bacterial and eukaryotic soil microbial communities at local and intercontinental scales. We compare how temporal variation in community composition scales with spatial variation in community composition, and explore the extent to which bacteria, protists, fungi and metazoa have similar patterns of temporal community dynamics. All soil microbial groups displayed a strong correlation between spatial distance and community dissimilarity, which was related to the ratio of organism to sample size. Temporal changes were variable, ranging from equal to local between-sample variation, to as large as that between communities several thousand kilometers apart. Moreover, significant correlations were found between bacterial and protist communities, as well as between protist and fungal communities, indicating that these microbial groups change in tandem, potentially driven by interactions between them. We conclude that temporal variation can be considerable in soil microbial communities, and that future studies need to consider temporal variation in order to reliably capture all drivers of soil microbiome changes.


Assuntos
Microbiota , Solo , Bactérias/genética , Eucariotos , Fungos/genética , Microbiologia do Solo
4.
PLoS One ; 9(11): e111663, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25391132

RESUMO

Pathogenic hantaviruses (family Bunyaviridae, genus Hantavirus) are rodent-borne viruses causing hemorrhagic fever with renal syndrome (HFRS) in Eurasia. In Europe, there are more than 10,000 yearly cases of nephropathia epidemica (NE), a mild form of HFRS caused by Puumala virus (PUUV). The common and widely distributed bank vole (Myodes glareolus) is the host of PUUV. In this study, we aim to explain and predict NE incidence in boreal Sweden using bank vole densities. We tested whether the number of rainy days in winter contributed to variation in NE incidence. We forecast NE incidence in July 2013-June 2014 using projected autumn vole density, and then considering two climatic scenarios: 1) rain-free winter and 2) winter with many rainy days. Autumn vole density was a strong explanatory variable of NE incidence in boreal Sweden in 1990-2012 (R2 = 79%, p<0.001). Adding the number of rainy winter days improved the model (R2 = 84%, p<0.05). We report for the first time that risk of NE is higher in winters with many rainy days. Rain on snow and ground icing may block vole access to subnivean space. Seeking refuge from adverse conditions and shelter from predators, voles may infest buildings, increasing infection risk. In a rainy winter scenario, we predicted 812 NE cases in boreal Sweden, triple the number of cases predicted in a rain-free winter in 2013/2014. Our model enables identification of high risk years when preparedness in the public health sector is crucial, as a rainy winter would accentuate risk.


Assuntos
Arvicolinae , Febre Hemorrágica com Síndrome Renal/veterinária , Chuva , Viroses/veterinária , Animais , Geografia , Febre Hemorrágica com Síndrome Renal/epidemiologia , Incidência , Densidade Demográfica , Virus Puumala , Estações do Ano , Suécia/epidemiologia , Viroses/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...