Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 5: 157, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782845

RESUMO

All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Extremely acidophilic microorganisms have an optimum growth of pH <3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

2.
Extremophiles ; 17(1): 75-85, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23143658

RESUMO

Zinc can occur in extremely high concentrations in acidic, heavy metal polluted environments inhabited by acidophilic prokaryotes. Although these organisms are able to thrive in such severely contaminated ecosystems their resistance mechanisms have not been well studied. Bioinformatic analysis of a range of acidophilic bacterial and archaeal genomes identified homologues of several known zinc homeostasis systems. These included primary and secondary transporters, such as the primary heavy metal exporter ZntA and Nramp super-family secondary importer MntH. Three acidophilic model microorganisms, the archaeon 'Ferroplasma acidarmanus', the Gram negative bacterium Acidithiobacillus caldus, and the Gram positive bacterium Acidimicrobium ferrooxidans, were selected for detailed analyses. Zinc speciation modeling of the growth media demonstrated that a large fraction of the free metal ion is complexed, potentially affecting its toxicity. Indeed, many of the putative zinc homeostasis genes were constitutively expressed and with the exception of 'F. acidarmanus' ZntA, they were not up-regulated in the presence of excess zinc. Proteomic analysis revealed that zinc played a role in oxidative stress in At. caldus and Am. ferrooxidans. Furthermore, 'F. acidarmanus' kept a constant level of intracellular zinc over all conditions tested whereas the intracellular levels increased with increasing zinc exposure in the remaining organisms.


Assuntos
Acidithiobacillus/crescimento & desenvolvimento , Modelos Biológicos , Thermoplasmales/crescimento & desenvolvimento , Microbiologia da Água , Poluentes Químicos da Água/farmacologia , Zinco/farmacologia , Acidithiobacillus/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Thermoplasmales/genética
3.
J Colloid Interface Sci ; 386(1): 350-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22901376

RESUMO

Typically, a significant fraction of phosphorus in soils is composed of organic phosphates, and this fraction thus plays an important role in the global phosphorus cycle. Here we have studied adsorption of monomethyl phosphate (MMP) to goethite (α-FeOOH) as a model system in order to better understand the mechanisms behind adsorption of organic phosphates to soil minerals, and how adsorption affects the stability of these molecules. The adsorption reactions and stability of MMP on goethite were studied at room temperature as a function of pH, time and total concentration of MMP by means of quantitative batch experiments, potentiometry and infrared spectroscopy. MMP was found to be stable at the water-goethite interface within the pH region 3-9 and over extended periods of time, as well as in solution. The infrared spectra indicated that MMP formed three predominating pH-dependent surface complexes on goethite, and that these interacted monodentately with surface Fe. The complexes differed in hydrogen bonding interactions via the auxiliary oxygens of the phosphate group. The presented surface complexation model was based on the collective spectroscopic and macroscopic results, using the Basic Stern approach to describe the interfacial region. The model consisted of three monodentate inner sphere surface complexes where the MMP complexes were stabilized by hydrogen bonding to a neighboring surface site. The three complexes, which had equal proton content and thus could be defined as surface isomers, were distinguished by the distribution of charge over the 0-plane and ß-plane. In the high pH-range, MMP acted as a hydrogen bond acceptor whereas it was a hydrogen bond donor at low pH.

4.
Sci Total Environ ; 407(14): 4253-60, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19361837

RESUMO

Two soils with similar contamination levels from wood preservatives containing Chromium (Cr), Copper (Cu) and Arsenic (As) (CCA), were assessed for their general toxicity and genotoxicity. A set of water-based extraction methods, including pressurized liquid extraction (PLE), and batch leaching in milli-Q water and a weak CaCl(2)-solution, was used to produce soil extracts containing available fractions of contaminants. In addition, to obtain indications of the contaminants' bioavailability and toxic potential the genotoxicity of the extracts was estimated by testing their ability to inhibit the growth of wildtype Chinese hamster ovary cells (CHO-cells) and three genetically modified phenotypes that are deficient in different DNA-repair mechanisms. Total extractable arsenic concentrations in the extracts were comparable between the sites. However, the genotoxic potential was clearly higher in soil R extracts. The differences in genotoxic responses were related to differences in inorganic arsenic speciation. The ratio of trivalent arsenic (As(III)) to pentavalent arsenic (As(V)) was higher in all soil extracts from soil R, regardless of the leaching method used. The results of the various combinations of soil extraction techniques and assays using the CHO-cell lines reflected important differences in arsenic speciation in the two soils and possible synergistic effects in CCA-related exposure. They also indicate that speciation and combinatory effects are factors that should be taken into account when assessing risks at former wood impregnation sites contaminated by CCA-agents.


Assuntos
Arsênio/toxicidade , Reparo do DNA , Mutagênicos/toxicidade , Poluentes do Solo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Células CHO , Cromo/análise , Cromo/toxicidade , Cobre/análise , Cobre/toxicidade , Cricetinae , Cricetulus , Poluentes do Solo/análise , Poluentes Químicos da Água/análise
5.
Chemosphere ; 74(2): 206-15, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18990425

RESUMO

The impact of water saturation level (oxidizing-reducing environment) on As and metal solubility in chromium, copper, arsenic (CCA)-contaminated soil amended with Fe-containing materials was studied. The soil was mixed with 0.1 and 1 wt% of iron grit (Fe(0)) and 1, 7 and 15 wt% of oxygen scarfing granulate (OSG, a by-product of steel processing). Solubility of As and metals was evaluated by a batch leaching test and analysis of soil pore water. Soil saturation with water greatly increased As solubility in the untreated as well as in the Fe-amended soil. This was related to the reductive dissolution of Fe oxides and increased concentration of As(III) species. Fe amendments showed As reducing capacity under both oxic and anoxic conditions. The cytotoxicity of the soil pore water correlated with the concentration of As(III). The Fe-treatments as well as water saturation of soil were less significant for the solubility of Cu, Cr and Zn than for As. The batch leaching test used for waste characterization substantially underestimated As solubility that could occur under water-saturated (anaerobic) conditions. In the case of soil landfilling, other techniques than Fe-stabilization of As containing soil should be considered.


Assuntos
Arsênio/química , Metais Pesados/química , Poluentes do Solo/química , Água/química , Cromo/química , Ferro/química , Oxirredução , Solubilidade
6.
Ambio ; 36(6): 430-6, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17985696

RESUMO

Remediation mainly based on excavation and burial of the contaminated soil is impractical with regard to the large numbers of sites identified as being in need of remediation. Therefore, alternative methods are needed for brownfield remediation. This study was conducted to assess a chemical stabilization procedure of CCA-contaminated soil using iron (Fe)-containing blaster sand (BS) or oxygen-scarfing granulate (OSG). The stabilization technique was assessed with regard to the feasibility of mixing ameliorants at an industrial scale and the efficiency of the stabilization under different redox conditions. The stability was investigated under natural conditions in 1-m3 lysimeters in a field experiment, and the effect of redox conditions was assessed in a laboratory experiment (10 L). The treatments with high additions of ameliorant (8% and 17%) were more successful in both the laboratory and field experiments, even though there was enough Fe on a stochiometric basis even at the lowest addition rates (0.1% and 1%). The particle size of the Fe and the mixing influenced the stabilization efficiency. The development of anaerobic conditions, simulated by water saturation, increases the fraction of arsenic (AsIII) and, consequently, As mobility. The use of high concentrations of OSG under aerobic conditions increased the concentrations of nickel (Ni) and copper (Cu) in the pore water. However, under anaerobic conditions, it decreased the As leaching compared with the untreated soil, and Ni and Cu leaching was not critical. The final destination of the treated soil should govern the amendment choice, that is, an OSG concentration of approximately 10% may be suitable if the soil is to be landfilled under anaerobic conditions. Alternatively, the soil mixed with 1% BS could be kept under aerobic conditions in a landfill cover or in situ at a brownfield site. In addition, the treatment with BS appeared to produce better effects in the long term than treatment with OSG.


Assuntos
Arsênio/química , Metais Pesados/química , Poluentes do Solo/química , Gerenciamento de Resíduos/métodos , Poluentes Químicos da Água/análise
7.
Water Res ; 40(5): 969-74, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16487563

RESUMO

Sorption processes involving secondary iron minerals may significantly contribute to immobilisation of metals in soils and surface waters. In the present work the effect of dissolved organic matter (DOM) from a concentrated bog-water on the adsorption of Cu(II) onto schwertmannite (Fe8O8(OH)6SO4) and goethite (alpha-FeOOH) has been studied. The acid/ base behaviour of DOM up to pH 6 was explained by assuming a diprotic acid with a density of carboxylate groups of 6.90 microeq (mg C)(-1). The resulting acidity constants, recalculated to zero ionic strength were pK(0)a1 = 3.61 and pK(0)a2 = 5.34. The uptake of DOM to schwertmannite and goethite was highest at low pH although adsorption was significant also under mildly alkaline conditions. Adsorption to the two minerals was similar although at high pH more DOM was adsorbed to schwertmannite than to goethite. DOM enhanced the adsorption of Cu(II) at moderately low pH in the goethite system but there was no effect of DOM in the case of schwertmannite. The presence of Cu(II) resulted in a decreased adsorption of DOM to goethite at weakly acidic pH and increased adsorption at high pH. In the case of schwertmannite, Cu(II) did not affect DOM uptake.


Assuntos
Cobre/química , Compostos de Ferro/química , Compostos Orgânicos/química , Adsorção , Concentração de Íons de Hidrogênio , Minerais , Eliminação de Resíduos Líquidos , Água/química
8.
Water Res ; 36(18): 4487-96, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12418651

RESUMO

The role of organic acids in buffering pH in surface waters has been studied using a small brownwater stream (26mg L(-1) TOC) draining a forested catchment in Northern Sweden. Under the conditions of elevated pressure of CO2 stream field pH was changed between 3.5 and 6.1 during the acidification and alkalinization experiment. Acid-base characteristics of the natural organic matter were also determined using a high precision potentiometric method for a concentrated sample from the same stream. We compared the predictions from the Windermere Humic Aqueous Model (WHAM Model V), a model derived from the potentiometric titration (diprotic/monoprotic acid model) and a previously derived triprotic acid model which only uses alkalinity and TOC as input variables. The predicted buffering characteristics of all three models are very similar in the pH range 4.5-7 which suggests that during routine analysis alkalinity and TOC are sufficient to give a good estimate of organic acid anion charge contribution in a large range of surface waters. A slightly adjusted version of WHAM V successfully describes the organic charge contribution in a large number of sampled surface water lakes, which were previously used to calibrate the triprotic model.


Assuntos
Chuva Ácida , Monitoramento Ambiental/métodos , Modelos Teóricos , Abastecimento de Água , Previsões , Concentração de Íons de Hidrogênio , Suécia , Árvores , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...