Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(50): 32756-32764, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36425699

RESUMO

Indium phosphide and derived compound semiconductors are materials often involved in high-efficiency solar water splitting due to their versatile opto-electronic properties. Surface corrosion, however, typically deteriorates the performance of photoelectrochemical solar cells based on this material class. It has been reported that (photo)electrochemical surface functionalisation protects the surface by combining etching and controlled corrosion. Nevertheless, the overall involved process is not fully understood. Therefore, access to the electrochemical interface structure under operando conditions is crucial for a more detailed understanding. One approach for gaining structural insight is the use of operando reflection anisotropy spectroscopy. This technique allows the time-resolved investigation of the interfacial structure while applying potentials in the electrolyte. In this study, p-doped InP(100) surfaces are cycled between anodic and cathodic potentials in two different electrolytes, hydrochloric acid and sulphuric acid. For low, 10 mM electrolyte concentrations, we observe a reversible processes related to the reduction of a surface oxide phase in the cathodic potential range which is reformed near open-circuit potentials. Higher concentrations of 0.5 N, however, already lead to initial surface corrosion.

2.
J Am Chem Soc ; 142(3): 1278-1286, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31875391

RESUMO

Employing Pt(111) supported 2D Pt-core Au-shell model catalysts, we demonstrate that 2D core-shell surfaces prepared under ultrahigh vacuum (UHV) conditions constitute excellent model systems to determine the activity of step sites in electrocatalysis, especially because UHV-scanning tunneling microscopy (STM) enables control of the quality of narrow step modifications with high accuracy on such systems. As verified with STM, cyclic voltammetry (CV), and temperature-programmed desorption (TPD) measurements, this approach allows us (i) to increase the step density by homoepitaxial growth of monolayer high islands on the respective single crystal and (ii) to modify the step sites for adsorption of reactants by selective deposition of a guest metal. Herein, STM imaging in combination with electrochemical characterization provides a direct control to ascertain a selective modification of the entire steps. Comparing the electrocatalytic activity of 2D core-shell systems with and without the shell enables us to identify the activity of step sites for electrocatalytic reactions, as demonstrated for the bulk CO electro-oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...