Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 30(32): 325101, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29974867

RESUMO

We investigate the structural properties of colloidal particle systems interacting via an isotropic pair potential and confined by a three-dimensional harmonic potential. The interaction potential has a repulsive-attractive-repulsive profile that varies with the interparticle distance (also known as a 'mermaid' potential). We performed Langevin dynamics simulations to find the equilibrium configurations of the system. We show that particles can self-assemble in complex structural patterns, such as compact disks, fringed disks, rods, spherical clusters with superficial entrances among others. Also, for particular values of the parameters of the interaction potential, we could identify that some configurations were formed by quasi two-dimensional (2D) structures which are stable for 2D systems.

2.
Artigo em Inglês | MEDLINE | ID: mdl-24229178

RESUMO

The structure of colloids with competing interactions which are confined in a harmonic external trap potential is analyzed numerically by energy minimization in two spatial dimensions. A wealth of different cluster structures is found to be stable including clusters with a fringed outer rim (reminiscent to an ornamental border), clusters perforated with voids, as well as clusters with a crystalline core and a disordered rim. All cluster structures occur in a two-dimensional parameter space. The structural ordering can therefore be efficiently tuned by changing few parameters only providing access to a controlled fabrication of colloidal clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA