Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 381(1): 55-69, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32036485

RESUMO

Traumatic brain injury (TBI) is a devastating event for which current therapies are limited. Stem cell transplantation may lead to recovery of function via different mechanisms, such as cell replacement through differentiation, stimulation of angiogenesis and support to the microenvironment. Adult hair follicle bulge-derived stem cells (HFBSCs) possess neuronal differentiation capacity, are easy to harvest and are relatively immune-privileged, which makes them potential candidates for autologous stem cell-based therapy. In this study, we apply in vivo multimodal, optical and magnetic resonance imaging techniques to investigate the behavior of mouse HFBSCs in a mouse model of TBI. HFBSCs expressed Luc2 and copGFP and were examined for their differentiation capacity in vitro. Subsequently, transduced HFBSCs, preloaded with ferumoxytol, were transplanted next to the TBI lesion (cortical region) in nude mice, 2 days after injury. Brains were fixed for immunohistochemistry 58 days after transplantation. Luc2- and copGFP-expressing, ferumoxytol-loaded HFBSCs showed adequate neuronal differentiation potential in vitro. Bioluminescence of the lesioned brain revealed survival of HFBSCs and magnetic resonance imaging identified their localization in the area of transplantation. Immunohistochemistry showed that transplanted cells stained for nestin and neurofilament protein (NF-Pan). Cells also expressed laminin and fibronectin but extracellular matrix masses were not detected. After 58 days, ferumoxytol could be detected in HFBSCs in brain tissue sections. These results show that HFBSCs are able to survive after brain transplantation and suggest that cells may undergo differentiation towards a neuronal cell lineage, which supports their potential use for cell-based therapy for TBI.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Folículo Piloso/citologia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Feminino , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células-Tronco
2.
Curr Pharm Des ; 25(17): 1951-1961, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291874

RESUMO

Macrophages play a role in almost every disease such as cancer, infections, injuries, metabolic and inflammatory diseases and are becoming an attractive therapeutic target. However, understanding macrophage diversity, tissue distribution and plasticity will help in defining precise targeting strategies and effective therapies. Active targeting of macrophages using nanoparticles for therapeutic purposes is still at its infancy but holds promises since macrophages have shown high specific uptake of nanoparticles. Here, we highlight recent progress in active nanotechnology-based systems gaining pivotal roles to target diverse macrophage subsets in diseased tissues.


Assuntos
Sistemas de Liberação de Medicamentos , Macrófagos/efeitos dos fármacos , Nanopartículas , Nanotecnologia/tendências , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...