Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(12)2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34960758

RESUMO

BACKGROUND: There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. METHODS: Here, we tested the antiviral properties of interferons (IFNs), alone and with other drugs in vitro. RESULTS: While IFNs alone were insufficient to completely abolish replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), IFNα, in combination with remdesivir, EIDD-2801, camostat, cycloheximide, or convalescent serum, proved to be more effective. Transcriptome and metabolomic analyses revealed that the IFNα-remdesivir combination suppressed SARS-CoV-2-mediated changes in Calu-3 cells and lung organoids, although it altered the homeostasis of uninfected cells and organoids. We also demonstrated that IFNα combinations with sofosbuvir, telaprevir, NITD008, ribavirin, pimodivir, or lamivudine were effective against HCV, HEV, FLuAV, or HIV at lower concentrations, compared to monotherapies. CONCLUSIONS: Altogether, our results indicated that IFNα can be combined with drugs that affect viral RNA transcription, protein synthesis, and processing to make synergistic combinations that can be attractive targets for further pre-clinical and clinical development against emerging and re-emerging viral infections.


Assuntos
Antivirais/farmacologia , Interferon-alfa/farmacologia , SARS-CoV-2/efeitos dos fármacos , Linhagem Celular , Sinergismo Farmacológico , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/virologia , Metaboloma/efeitos dos fármacos , Organoides , RNA Viral/biossíntese , RNA Viral/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Vírus/classificação , Vírus/efeitos dos fármacos
2.
Front Microbiol ; 12: 631557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815313

RESUMO

Antimicrobial resistance is an increasing threat to global health and challenges the way we treat infections. Peptides containing the PCNA interacting motif APIM (APIM-peptides) were recently shown to bind to the bacterial PCNA homolog, the beta (ß)-clamp, and to have both antibacterial and anti-mutagenic activities. In this study we explore the antibacterial effects of these peptides on Staphylococcus epidermidis, a bacterial species commonly found in prosthetic joint infections (PJI). Drug-resistant bacterial isolates from PJIs often lead to difficult-to-treat chronic infections. We show that APIM-peptides have a rapid bactericidal effect which when used at sublethal levels also increase the efficacy of gentamicin. In addition, APIM-peptides reduce development and eliminate already existing S. epidermidis biofilm. To study the potential use of APIM-peptides to prevent PJI, we used an in vivo bone graft model in rats where APIM-peptide, gentamicin, or a combination of the two was added to cement. The bone grafts containing cement with the combination was more effective than cement containing only gentamicin, which is the current standard of care. In summary, these results suggest that APIM-peptides can be a promising new drug candidate for anti-infective implant materials to use in the fight against resistant bacteria and chronic PJI.

3.
J Orthop Surg Res ; 15(1): 522, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176843

RESUMO

BACKGROUND: In cases of prosthetic joint infections, culture of sonication fluid can supplement culture of harvested tissue samples for correct microbial diagnosis. However, discrepant results regarding the increased sensitivity of sonication have been reported in several studies. To what degree bacteria embedded in biofilm are dislodged during the sonication process has to our knowledge not been fully elucidated. In the present in vitro study, we have evaluated the effect of sonication as a method to dislodge biofilm by quantitative microscopy. METHODS: We used a standard biofilm method to cover small steel plates with biofilm forming Staphylococcus epidermidis ATCC 35984 and carried out the sonication procedure according to clinical practice. By comparing area covered with biofilm before and after sonication with epifluorescence microscopy, the effect of sonication on biofilm removal was quantified. Two series of experiments were made, one with 24-h biofilm formation and another with 72-h biofilm formation. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to confirm whether bacteria were present after sonication. In addition, quantitative bacteriology of sonication fluid was performed. RESULTS: Epifluorescence microscopy enabled visualization of biofilm before and after sonication. CLSM and SEM confirmed coccoid cells on the surface after sonication. Biofilm was dislodged in a highly variable manner. CONCLUSION: There is an unexpected high variation seen in the ability of sonication to dislodge biofilm-embedded S. epidermidis in this in vitro model.


Assuntos
Biofilmes/crescimento & desenvolvimento , Microscopia de Fluorescência , Sonicação/métodos , Staphylococcus epidermidis/fisiologia , Técnicas In Vitro , Microscopia Confocal , Microscopia Eletrônica de Varredura , Fatores de Tempo
4.
Viruses ; 12(10)2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080984

RESUMO

Combination therapies have become a standard for the treatment for HIV and hepatitis C virus (HCV) infections. They are advantageous over monotherapies due to better efficacy, reduced toxicity, as well as the ability to prevent the development of resistant viral strains and to treat viral co-infections. Here, we identify new synergistic combinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), echovirus 1 (EV1), hepatitis C virus (HCV) and human immunodeficiency virus 1 (HIV-1) in vitro. We observed synergistic activity of nelfinavir with convalescent serum and with purified neutralizing antibody 23G7 against SARS-CoV-2 in human lung epithelial Calu-3 cells. We also demonstrated synergistic activity of nelfinavir with EIDD-2801 or remdesivir in Calu-3 cells. In addition, we showed synergistic activity of vemurafenib with emetine, homoharringtonine, anisomycin, or cycloheximide against EV1 infection in human lung epithelial A549 cells. We also found that combinations of sofosbuvir with brequinar or niclosamide are synergistic against HCV infection in hepatocyte-derived Huh-7.5 cells, and that combinations of monensin with lamivudine or tenofovir are synergistic against HIV-1 infection in human cervical TZM-bl cells. These results indicate that synergy is achieved when a virus-directed antiviral is combined with another virus- or host-directed agent. Finally, we present an online resource that summarizes novel and known antiviral drug combinations and their developmental status.


Assuntos
Antivirais/administração & dosagem , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Células A549 , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Antineoplásicos/farmacologia , Antivirais/farmacologia , COVID-19 , Linhagem Celular , Infecções por Coronavirus/virologia , Bases de Dados de Produtos Farmacêuticos , Combinação de Medicamentos , Descoberta de Drogas , Sinergismo Farmacológico , Enterovirus Humano B/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Humanos , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
5.
Viruses ; 12(6)2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545799

RESUMO

As of June 2020, the number of people infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) continues to skyrocket, with more than 6.7 million cases worldwide. Both the World Health Organization (WHO) and United Nations (UN) has highlighted the need for better control of SARS-CoV-2 infections. However, developing novel virus-specific vaccines, monoclonal antibodies and antiviral drugs against SARS-CoV-2 can be time-consuming and costly. Convalescent sera and safe-in-man broad-spectrum antivirals (BSAAs) are readily available treatment options. Here, we developed a neutralization assay using SARS-CoV-2 strain and Vero-E6 cells. We identified the most potent sera from recovered patients for the treatment of SARS-CoV-2-infected patients. We also screened 136 safe-in-man broad-spectrum antivirals against the SARS-CoV-2 infection in Vero-E6 cells and identified nelfinavir, salinomycin, amodiaquine, obatoclax, emetine and homoharringtonine. We found that a combination of orally available virus-directed nelfinavir and host-directed amodiaquine exhibited the highest synergy. Finally, we developed a website to disseminate the knowledge on available and emerging treatments of COVID-19.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Testes de Neutralização/métodos , Pneumonia Viral/tratamento farmacológico , Amodiaquina/farmacologia , Animais , COVID-19 , Células CACO-2 , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Coronavirus/terapia , Quimioterapia Combinada , Emetina/farmacologia , Células HEK293 , Células HT29 , Mepesuccinato de Omacetaxina/farmacologia , Humanos , Soros Imunes/imunologia , Imunização Passiva/métodos , Indóis , Nelfinavir/farmacologia , Pandemias , Piranos/farmacologia , Pirróis/farmacologia , SARS-CoV-2 , Células Vero , Soroterapia para COVID-19
6.
J Orthop Surg Res ; 15(1): 23, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964416

RESUMO

BACKGROUND: The aim of the study was to establish an experimental chronic musculoskeletal infection model in vivo characterized by (a) a small bacterial inoculum, (b) no general or local signs of infection, (c) several parallels (implants) in each animal and finally (d) a model that is technically easy to perform. METHODS: Bone xenografts with steel plates were implanted intramuscularly in rats. To the xenografts, different inocula of Staphylococcus aureus and two strains of Staphylococcus epidermidis were added. The animals were observed for different time periods before the removal of the xenografts. The xenografts and steel plates were subjected to quantitative bacterial culture after sonication. Additional steel plates were subjected to scanning electron microscopy (SEM) for visualization of biofilm formation. RESULTS: Inoculation of bone grafts with S. aureus did produce a pyogenic infection in all animals. A chronic infection was established in rats where the bone grafts were inoculated with S. epidermidis. A bacterial inoculum of 100 colony-forming units (CFU) of S. epidermidis was adequate as a minimum infective dose. During a period of up until 42 days, the animals infected with S. epidermidis had no general or local signs of infection. According to the results of the quantitative bacterial culture of sonicate fluid and SEM, a biofilm was developed on all implants. CONCLUSION: In the present in vivo model, a very small bacterial inoculum succeeded in establishing a chronic musculoskeletal implant infection where a biofilm was formed on the implants. The experimental model is easy to perform and allows several implants in each animal. The model could be useful for the study of biofilm formation in vivo on different implants and different surfaces.


Assuntos
Modelos Animais de Doenças , Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Animais , Doença Crônica , Ratos , Staphylococcus aureus , Staphylococcus epidermidis
7.
J Med Microbiol ; 61(Pt 4): 572-581, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22135023

RESUMO

The diagnosis of a chronic prosthetic joint infection (PJI) is challenging, and no consensus exists regarding how best to define the criteria required for microbiological identification. A general view is that culture of periprosthetic biopsies suffers from inadequate sensitivity. Recently, molecular analyses have been employed in some studies but the specificity of molecular analyses has been questioned, mainly due to contamination issues. In a prospective study of 54 patients undergoing revision surgery due to prosthetic joint loosening, we focused on two aspects of microbiological diagnosis of chronic PJI. First, by collecting diagnostic specimens in a highly standardized manner, we aimed at investigating the adequacy of various specimens by performing quantitative bacteriological culture. Second, we designed and performed real-time 16S rRNA gene PCR analysis with particular emphasis on minimizing the risk of false-positive PCR results. The specimens analysed included synovial fluid, periprosthetic biopsies from the joint capsule and the interface membrane, and specimens from the surface of the explanted prosthesis rendered accessible by scraping and sonication. No antibiotics were given prior to specimen collection. Based on five diagnostic criteria recently suggested, we identified 18 PJIs, all of which fulfilled the criterion of ≥2 positive cultures of periprosthetic specimens. The rate of culture-positive biopsies from the interface membrane was higher compared to specimens from the joint capsule and synovial fluid, and the interface membrane contained a higher bacterial load. Interpretational criteria were applied to differentiate a true-positive PCR from potential bacterial DNA contamination derived from the reagents used for DNA extraction and amplification. The strategy to minimize the risk of false-positive PCR results was successful as only two PCR results were false-positive out of 216 negative periprosthetic specimens. Although the PCR assays themselves were very sensitive, three patients with low bacterial numbers in periprosthetic specimens tested negative by real-time PCR. This overall lowered sensitivity is most likely due to the reduced specimen volume used for PCR analysis compared to culture and may also be due to interference from human DNA present in tissue specimens. According to the protocol in the present study, 16S rRNA gene real-time PCR did not identify more cases of septic prosthetic loosening than did culture of adequate periprosthetic biopsies.


Assuntos
Prótese Articular/efeitos adversos , Falha de Prótese/etiologia , Infecções Relacionadas à Prótese/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artroplastia de Quadril , Artroplastia do Joelho , Bactérias/classificação , Bactérias/isolamento & purificação , Infecções Bacterianas/complicações , Infecções Bacterianas/microbiologia , Doença Crônica , Feminino , Articulação do Quadril , Humanos , Articulação do Joelho , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Infecções Relacionadas à Prótese/complicações , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reoperação
8.
Inflammopharmacology ; 13(1-3): 229-34, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16259742

RESUMO

Gastric bypass is a clinical option for obesity surgery. An increased susceptibility to Helicobacter pylori infection in the bypassed stomach has been speculated. The aim of the present study was to examine the susceptibility of the bypassed stomach to H. pylori infection in rats and mice. Adult Sprague-Dawley and Wistar rats and NMRI mice were subjected to either gastric bypass or laparotomy only as control. The animals were inoculated with the CagA- and VacA- positive H. pylori strain 67/21 (not mouse-adapted) in the first experiment and with 9 additional isolates in the second, by injection into the bypassed stomach or the control stomach during surgery. The stomach of each animal was collected for H. pylori culture 2-3 weeks later. While all the rats were H. pylori negative, 54% of gastric bypassed mice and 75% of controls were positive (P = 0.4). We conclude that susceptibility to H. pylori infection in the stomach is not increased by gastric bypass surgery.


Assuntos
Derivação Gástrica/métodos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Estômago/cirurgia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças/complicações , Feminino , Infecções por Helicobacter/etiologia , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Estômago/microbiologia , Estômago/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...