Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1228084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780513

RESUMO

Introduction: Water is one of the important factors affecting the yield of leafy vegetables. Lettuce, as a widely planted vegetable, requires frequent irrigation due to its shallow taproot and high leaf evaporation rate. Therefore, screening drought-resistant genotypes is of great significance for lettuce production. Methods: In the present study, significant variations were observed among 13 morphological and physiological traits of 42 lettuce genotypes under normal irrigation and water-deficient conditions. Results: Frequency analysis showed that soluble protein (SP) was evenly distributed across six intervals. Principal component analysis (PCA) was conducted to transform the 13 indexes into four independent comprehensive indicators with a cumulative contribution ratio of 94.83%. The stepwise regression analysis showed that root surface area (RSA), root volume (RV), belowground dry weight (BDW), soluble sugar (SS), SP, and leaf relative water content (RWC) could be used to evaluate and predict the drought resistance of lettuce genotypes. Furthermore, the drought resistance ranks of the genotypes were similar according to the drought resistance comprehensive evaluation value (D value), comprehensive drought resistance coefficient (CDC), and weight drought resistance coefficient (WDC). The cluster analysis enabled the division of the 42 genotypes into five drought resistance groups; among them, variety Yidali151 was divided into group I as a strongly drought-resistant variety, group II included 6 drought-resistant genotypes, group III included 16 moderately drought-resistant genotypes, group IV included 12 drought-sensitive genotypes, and group V included 7 highly drought-sensitive genotypes. Moreover, a representative lettuce variety was selected from each of the five groups to verify its water resistance ability under water deficit conditions. In the drought-resistant variety, it was observed that stomatal density, superoxide anion (O2.-wfi2) production rate, and malondialdehyde (MDA) content exhibited a low increase rate, while catalase (CAT), superoxide dismutase (SOD), and that peroxidase (POD) activity exhibited a higher increase than in the drought-sensitive variety. Discussion: In summary, the identified genotypes are important because their drought-resistant traits can be used in future drought-resistant lettuce breeding programs and water-efficient cultivation.

2.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762179

RESUMO

The deleterious effects of drought stress have led to a significant decline in vegetable production, ultimately affecting food security. After sensing drought stress signals, vegetables prompt multifaceted response measures, eventually leading to changes in internal cell structure and external morphology. Among them, it is important to highlight that the changes, including changes in physiological metabolism, signal transduction, key genes, and hormone regulation, significantly influence drought stress tolerance in vegetables. This article elaborates on vegetable stress tolerance, focusing on structural adaptations, key genes, drought stress signaling transduction pathways, osmotic adjustments, and antioxidants. At the same time, the mechanisms of exogenous hormones such as abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) toward improving the adaptive drought tolerance of vegetables were also reviewed. These insights can enhance the understanding of vegetable drought tolerance, supporting vegetable tolerance enhancement by cultivation technology improvements under changing climatic conditions, which provides theoretical support and technical reference for innovative vegetable stress tolerance breeding and food security.


Assuntos
Secas , Verduras , Melhoramento Vegetal , Resistência à Seca , Hormônios
3.
Front Plant Sci ; 14: 1192340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377810

RESUMO

Introduction: Strigolactone (SL) and auxin are two important phytohormones involved in plant root development, but whether they show synergistic or mutual promotion effects during adventitious root (AR) formation has not been adequately explored. Methods: In this study, we investigated the mechanisms of GR24 (synthetic SL) and indole-3-acetic acid (IAA; a type of auxin) in the formation of ARs using melon as the study material. Results: Morphological measurements showed that the AR number, length, superficial area, and volume under the GR24 treatment were 1.60-3.27, 1.58-3.99, 2.06-3.42, and 3.00-6.11 times greater than those of the control group, respectively, at 6-10 days; the GR24+IAA treatment further promoted AR formation in melon seedlings, and the AR number, length, superficial area, and volume under the GR24+IAA treatment were 1.44-1.51, 1.28-1.73, 1.19-1.83, and 1.31-1.87 times greater than those obtained with the GR24 treatment, respectively. Transcriptome analysis revealed 2,742, 3,352, and 2,321 differentially expressed genes (DEGs) identified from the GR24 vs. control, GR24+IAA vs. control, and GR24+IAA vs. GR24 comparisons, respectively. The GR24 treatment and GR24+IAA treatment affected auxin and SL synthesis as well as components of the phytohormone signal transduction pathway, such as auxin, brassinosteroid (BR), ethylene (ETH), cytokinin (CK), gibberellin (GA), and abscisic acid (ABA). The concentrations of auxin, GA, zeatin (ZT), and ABA were evaluated using high-performance liquid chromatography (HPLC). From 6 to 10 days, the auxin, GA, and ZT contents in the GR24 treatment group were increased by 11.48%-15.34%, 11.83%-19.50%, and 22.52%-66.17%, respectively, compared to the control group, and these features were increased by 22.00%-31.20%, 21.29%-25.75%, 51.76%-98.96%, respectively, in the GR24+IAA treatment group compared with the control group. Compared to that in the control, the ABA content decreased by 10.30%-11.83% in the GR24 treatment group and decreased by 18.78%-24.00% in the GR24+IAA treatment group at 6-10 days. Discussion: Our study revealed an interaction between strigolactone and auxin in the induction of AR formation in melon seedlings by affecting the expression of genes related to plant hormone pathways and contents.

4.
Front Plant Sci ; 14: 1167145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332726

RESUMO

Introduction: Grafting is a commonly used cultural practice to counteract salt stress and is especially important for vegetable production. However, it is not clear which metabolic processes and genes are involved in the response of tomato rootstocks to salt stress. Methods: To elucidate the regulatory mechanism through which grafting enhances salt tolerance, we first evaluated the salt damage index, electrolyte permeability and Na+ accumulation in tomato (Solanum lycopersicum L.) leaves of grafted seedlings (GSs) and nongrafted seedlings (NGSs) subjected to 175 mmol·L- 1 NaCl for 0-96 h, covering the front, middle and rear ranges. Results: Compared with the NGS, the GSs were more salt tolerant, and the Na+ content in the leaves decreased significantly. Through transcriptome sequencing data analysis of 36 samples, we found that GSs exhibited more stable gene expression patterns, with a lower number of DEGs. WRKY and PosF21 transcription factors were significantly upregulated in the GSs compared to the NGSs. Moreover, the GSs presented more amino acids, a higher photosynthetic index and a higher content of growth-promoting hormones. The main differences between GSs and NGSs were in the expression levels of genes involved in the BR signaling pathway, with significant upregulation of XTHs. The above results show that the metabolic pathways of "photosynthetic antenna protein", "amino acid biosynthesis" and "plant hormone signal transduction" participate in the salt tolerance response of grafted seedlings at different stages of salt stress, maintaining the stability of the photosynthetic system and increasing the contents of amino acids and growth-promoting hormones (especially BRs). In this process, the transcription factors WRKYs, PosF21 and XTHs might play an important role at the molecular level. Discussion: The results of this study demonstrates that grafting on salt tolerant rootstocks can bring different metabolic processes and transcription levels changes to scion leaves, thereby the scion leaves show stronger salt tolerance. This information provides new insight into the mechanism underlying tolerance to salt stress regulation and provides useful molecular biological basis for improving plant salt resistance.

5.
Metabolites ; 13(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36984787

RESUMO

γ- Aminobutyric acid (GABA) is a ubiquitous four-carbon non-protein amino acid. In plants, GABA is found in different cell compartments and performs different metabolic functions. As a signalling molecule, GABA participates in the regulation of tolerance to various abiotic stresses. Many research studies have found that GABA accumulates in large amounts when plants are subjected to abiotic stress, which have been demonstrated through the Web of Science, PubMed, Elsevier and other databases. GABA enhances the tolerance of plants to abiotic stress by regulating intracellular pH, ion transport, activating antioxidant systems and scavenging active oxygen species. In the process of GABA playing its role, transport is very important for the accumulation and metabolism pathway of GABA in cells. Therefore, the research on the transport of GABA across the cell membrane and the organelle membrane by transport proteins is a direction worthy of attention. This paper describes the distribution, biosynthesis and catabolism of GABA in plants. In addition, we focus on the latest progress in research on the transport of exogenous GABA and on the function and mechanism in the regulation of the abiotic stress response. Based on this summary of the role of GABA in the resistance to various abiotic stresses, we conclude that GABA has become an effective compound for improving plant abiotic tolerance.

6.
Antioxidants (Basel) ; 11(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36358478

RESUMO

Reactive oxygen species (ROS) are signaling molecules that regulate many biological processes in plants. However, excess ROS induced by biotic and abiotic stresses can destroy biological macromolecules and cause oxidative damage to plants. As the global environment continues to deteriorate, plants inevitably experience abiotic stress. Therefore, in-depth exploration of ROS metabolism and an improved understanding of its regulatory mechanisms are of great importance for regulating cultivated plant growth and developing cultivars that are resilient to abiotic stresses. This review presents current research on the generation and scavenging of ROS in plants and summarizes recent progress in elucidating transcription factor-mediated regulation of ROS metabolism. Most importantly, the effects of applying exogenous substances on ROS metabolism and the potential regulatory mechanisms at play under abiotic stress are summarized. Given the important role of ROS in plants and other organisms, our findings provide insights for optimizing cultivation patterns and for improving plant stress tolerance and growth regulation.

7.
Plant Pathol J ; 38(3): 229-238, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35678056

RESUMO

Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is the most serious soil-borne disease in the world and has become the main limiting factor of watermelon production. Reliable and quick detection and quantification of Fon are essential in the early stages of infection for control of watermelon Fusarium wilt. Traditional detection and identification tests are laborious and cannot efficiently quantify Fon isolates. In this work, a real-time polymerase chain reaction (PCR) assay has been described to accurately identify and quantify Fon in watermelon plants and soil. The FONRT-18 specific primer set which was designed based on identified specific sequence amplified a specific 172 bp band from Fon and no amplification from the other formae speciales of Fusarium oxysporum tested. The detection limits with primers were 1.26 pg/µl genomic DNA of Fon, 0.2 pg/ng total plant DNA in inoculated plant, and 50 conidia/g soil. The PCR assay could also evaluate the relationships between the disease index and Fon DNA quantity in watermelon plants and soil. The assay was further used to estimate the Fon content in soil after disinfection with CaCN2. The real-time PCR method is rapid, accurate and reliable for monitoring and quantification analysis of Fon in watermelon plants and soil. It can be applied to the study of disease diagnosis, plant-pathogen interactions, and effective management.

8.
BMC Plant Biol ; 20(1): 465, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036565

RESUMO

BACKGROUND: Salt stress is a serious abiotic stress that caused crop growth inhibition and yield decline. Previous studies have reported on the the synthesis of gamma-aminobutyric acid (GABA) and its relationship with plant resistance under various abiotic stress. However, the relationship between exogenous GABA alleviating plant salt stress damage and ion flux, amino acid synthesis, and key enzyme expression remains largely unclear. We investigated plant growth, Na+ transportation and accumulation, reactive oxygen species (ROS) metabolism and evaluated the effect of GABA on amino acids, especially SlGADs gene expression and the endogenous GABA content of tomato (Solanum lycopersicum L.) seedlings treated with or without 5 mmol·L- 1 GABA under 175 mmol·L- 1 NaCl stress. RESULTS: Exogenous application of GABA significantly reduced the salt damage index and increased plant height, chlorophyll content and the dry and fresh weights of tomato plants exposed to NaCl stress. GABA significantly reduced Na+ accumulation in leaves and roots by preventing Na+ influx in roots and transportation to leaves. The transcriptional expression of SlGAD1-3 genes were induced by NaCl stress especially with GABA application. Among them, SlGAD1 expression was the most sensitive and contributed the most to the increase in glutamate decarboxylase (GAD) activity induced by NaCl and GABA application; Exogenous GABA increased GAD activity and amino acid contents in tomato leaves compared with the levels under NaCl stress alone, especially the levels of endogenous GABA, proline, glutamate and eight other amino acids. These results indicated that SlGADs transcriptional expression played an important role in tomato plant resistance to NaCl stress with GABA application by enhancing GAD activity and amino acid contents. GABA significantly alleviated the active oxygen-related injury of leaves under NaCl stress by increasing the activities of antioxidant enzymes and decreasing the contents of active oxygen species and malondialdehyde. CONCLUSION: Exogenous GABA had a positive effect on the resistance of tomato seedlings to salt stress, which was closely associated with reducing Na+ flux from root to leaves, increasing amino acid content and strengthening antioxidant metabolism. Endogenous GABA content was induced by salt and exogenous GABA at both the transcriptional and metabolic levels.


Assuntos
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Estresse Fisiológico/genética , Ácido gama-Aminobutírico/metabolismo , China , Íons/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/fisiologia , Plântula/metabolismo , Estresse Fisiológico/fisiologia
9.
Artigo em Chinês | MEDLINE | ID: mdl-16477137

RESUMO

Effects of different concentration NaCl stress on cation contents of pumpkin cultivars (Cucurbita ficifolia and Cucurbita moschata) usually used as rootstocks of cucumber were studied. The results showed that, in both cultivars treated with 150, 300 and 500 mmol/L NaCl for 7 d, increasing salinity caused in increasing retardation of shoot and root growth, and reduction of shoot relative water content (Table 1). With increasing NaCl concentration, Na(+) content increased while K(+) content decreased distinctly in roots, stems and leaves of both cultivars. And Na(+) and K(+) contents in different organs were in the orders roots>stems>leaves and stems>leaves>roots respectively (Fig.3). There were less Na(+) in root, stem and leaf (Fig.3), more free proline and soluble sugar in leaves (Fig.1, 2), and higher shoot relative water content (Table 1) in C. ficifolia than in C. moschata. So there are differences between C. ficifolia and C. moschata in osmotic adjustment mechanisms and selective absorption and transportation of different cations, and the salt tolerance of C. ficifolia is higher than C. moschata.


Assuntos
Cátions/metabolismo , Cloretos/toxicidade , Cucurbita/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Plântula/efeitos dos fármacos , Cálcio/fisiologia , Cucurbita/fisiologia , Luz , Folhas de Planta/metabolismo , Potássio/fisiologia , Prolina/metabolismo , Plântula/química , Plântula/crescimento & desenvolvimento , Sódio/fisiologia
10.
Ying Yong Sheng Tai Xue Bao ; 17(12): 2352-6, 2006 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-17330479

RESUMO

In this paper, arbuscular mycorrhizal fungi (AMF) Glomus versiforme (GV), Glomus mosseae (GM), Glomus intraradices (GI) and their mixtures were applied to inoculate plastic greenhouse Cucumis sativus seedlings to investigate the effects of AMF on C. sativus growth, development, yield, and quality. The results showed that all test AMF could form mycorrhiza with cucumber roots, and the infected rate reached 41.74% - 55.69%. Compared with the control, treatments GV, GM, GM + GV, GM + GV + GI and GV + GI enhanced the healthy seedling index by 58.14% - 123.6%, and increased early yield by 21.71% - 37.87% and total yield by 19.72% - 34.41%. AMF also improved fruit quality. The Vc content of cucumber fruit increased by 22.84% and 21.95% in treatments GM + GV and GV + GI, soluble sugar content increased by 13.29%, 8.25%, and 10.20% in treatments GV, GI and GV + GI, and amino acid content increased by 47.66% and 23.19% in treatments GV and GM + GI, respectively, while soluble protein content increased by 17.67% - 34.29% in all AMF treatments. The results suggested that AMF inoculation could significantly promote the seedling growth of cucumber and improve its fruit quality, and the effects differed with different AMF and their combinations.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/microbiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Biomassa , Ambiente Controlado , Frutas , Controle de Qualidade , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...