Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(8): e2103864, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35038237

RESUMO

Widely wavelength-tunable femtosecond light sources in a compact, robust footprint play a central role in many prolific research fields and technologies, including medical diagnostics, biophotonics, and metrology. Fiber lasers are on the verge in the development of such sources, yet widespan spectral tunability of femtosecond pulses remains a pivotal challenge. Dispersive wave generation, also known as Cherenkov radiation, offers untapped potentials to serve these demands. In this work, the concept of quasi-phase matching for multi-order dispersive wave formation with record-high spectral fidelity and femtosecond durations is exploited in selected, partially conventionally unreachable spectral regions. Versatile patterned sputtering is utilized to realize height-modulated high-index nano-films on exposed fiber cores to alter fiber dispersion to an unprecedented degree through spatially localized, induced resonances. Nonlinear optical experiments and simulations, as well as phase-mismatching considerations based on an effective dispersion, confirm the conversion process and reveal unique emission features, such as almost power-independent wavelength stability and femtosecond duration. This resonance-empowered approach is applicable to both fiber and on-chip photonic systems and paves the way to instrumentalize dispersive wave generation as a unique tool for efficient, coherent femtosecond multi-frequency conversion for applications in areas such as bioanalytics, life science, quantum technology, or metrology.

2.
Adv Mater ; 32(47): e2003826, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33025663

RESUMO

Atomically thin transition metal dichalcogenides are highly promising for integrated optoelectronic and photonic systems due to their exciton-driven linear and nonlinear interactions with light. Integrating them into optical fibers yields novel opportunities in optical communication, remote sensing, and all-fiber optoelectronics. However, the scalable and reproducible deposition of high-quality monolayers on optical fibers is a challenge. Here, the chemical vapor deposition of monolayer MoS2 and WS2 crystals on the core of microstructured exposed-core optical fibers and their interaction with the fibers' guided modes are reported. Two distinct application possibilities of 2D-functionalized waveguides to exemplify their potential are demonstrated. First, the excitonic 2D material photoluminescence is simultaneously excited and collected with the fiber modes, opening a novel route to remote sensing. Then it is shown that third-harmonic generation is modified by the highly localized nonlinear polarization of the monolayers, yielding a new avenue to tailor nonlinear optical processes in fibers. It is anticipated that the results may lead to significant advances in optical-fiber-based technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...