Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol Drugs Drug Resist ; 4(1): 55-63, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24596669

RESUMO

African trypanosomes, like all obligate parasitic protozoa, cannot synthesize purines de novo and import purines from their hosts to build nucleic acids. The purine salvage pathways of Trypanosoma brucei being redundant, none of the involved enzymes is likely to be essential. Nevertheless they can be of pharmacological interest due to their role in activation of purine nucleobase or nucleoside analogues, which only become toxic when converted to nucleotides. Aminopurine antimetabolites, in particular, are potent trypanocides and even adenine itself is toxic to trypanosomes at elevated concentrations. Here we report on the T. brucei adenine phosphoribosyltransferases TbAPRT1 and TbAPRT2, encoded by the two genes Tb927.7.1780 and Tb927.7.1790, located in tandem on chromosome seven. The duplication is syntenic in all available Trypanosoma genomes but not in Leishmania. While TbAPRT1 is cytosolic, TbAPRT2 possesses a glycosomal targeting signal and co-localizes with the glycosomal marker aldolase. Interestingly, the distribution of glycosomal targeting signals among trypanosomatid adenine phosphoribosyltransferases is not consistent with their phylogeny, indicating that the acquisition of adenine salvage to the glycosome happened after the radiation of Trypanosoma. Double null mutant T. brucei Δtbaprt1,2 exhibited no growth phenotype but no longer incorporated exogenous adenine into the nucleotide pool. This, however, did not reduce their sensitivity to adenine. The Δtbaprt1,2 trypanosomes were resistant to the adenine isomer aminopurinol, indicating that it is activated by phosphoribosyl transfer. Aminopurinol was about 1000-fold more toxic to bloodstream-form T. brucei than the corresponding hypoxanthine isomer allopurinol. Aminopurinol uptake was not dependent on the aminopurine permease P2 that has been implicated in drug resistance.

2.
Eukaryot Cell ; 9(4): 539-46, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20190075

RESUMO

The molecular mechanisms of K(+) homeostasis are only poorly understood for protozoan parasites. Trypanosoma brucei subsp. parasites, the causative agents of human sleeping sickness and nagana, are strictly extracellular and need to actively concentrate K(+) from their hosts' body fluids. The T. brucei genome contains two putative K(+) channel genes, yet the trypanosomes are insensitive to K(+) antagonists and K(+) channel-blocking agents, and they do not spontaneously depolarize in response to high extracellular K(+) concentrations. However, the trypanosomes are extremely sensitive to K(+) ionophores such as valinomycin. Surprisingly, T. brucei possesses a member of the Trk/HKT superfamily of monovalent cation permeases which so far had only been known from bacteria, archaea, fungi, and plants. The protein was named TbHKT1 and functions as a Na(+)-independent K(+) transporter when expressed in Escherichia coli, Saccharomyces cerevisiae, or Xenopus laevis oocytes. In trypanosomes, TbHKT1 is expressed in both the mammalian bloodstream stage and the Tsetse fly midgut stage; however, RNA interference (RNAi)-mediated silencing of TbHKT1 expression did not produce a growth phenotype in either stage. The presence of HKT genes in trypanosomatids adds a further piece to the enigmatic phylogeny of the Trk/HKT superfamily of K(+) transporters. Parsimonial analysis suggests that the transporters were present in the first eukaryotes but subsequently lost in several of the major eukaryotic lineages, in at least four independent events.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Potássio/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Humanos , Dados de Sequência Molecular , Oócitos/citologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Fenótipo , Filogenia , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Interferência de RNA , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética , Moscas Tsé-Tsé/metabolismo , Moscas Tsé-Tsé/parasitologia , Xenopus laevis
3.
Antimicrob Agents Chemother ; 51(11): 3895-901, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17698621

RESUMO

Trypanosoma brucei cannot synthesize purines de novo and relies on purine salvage from its hosts to build nucleic acids. With adenosine being a preferred purine source of bloodstream-form trypanosomes, adenosine kinase (AK; EC 2.7.1.20) is likely to be a key player in purine salvage. Adenosine kinase is also of high pharmacological interest, since for many adenosine antimetabolites, phosphorylation is a prerequisite for activity. Here, we cloned and functionally characterized adenosine kinase from T. brucei (TbAK). TbAK is a tandem gene, expressed in both procyclic- and bloodstream-form trypanosomes, whose product localized to the cytosol of the parasites. The RNA interference-mediated silencing of TbAK suggested that the gene is nonessential under standard growth conditions. Inhibition or downregulation of TbAK rendered the trypanosomes resistant to cordycepin (3'-deoxyadenosine), demonstrating a role for TbAK in the activation of adenosine antimetabolites. The expression of TbAK in Saccharomyces cerevisiae complemented a null mutation in the adenosine kinase gene ado1. The concomitant expression of TbAK with the T. brucei adenosine transporter gene TbAT1 allowed S. cerevisiae ado1 ade2 double mutants to grow on adenosine as the sole purine source and, at the same time, sensitized them to adenosine antimetabolites. The coexpression of TbAK and TbAT1 in S. cerevisiae ado1 ade2 double mutants proved to be a convenient tool for testing nucleoside analogues for uptake and activation by T. brucei adenosine salvage enzymes.


Assuntos
Adenosina Quinase/metabolismo , Proteínas de Protozoários/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/química , Adenosina/farmacologia , Adenosina Quinase/genética , Animais , Northern Blotting , Southern Blotting , Western Blotting , Desoxiadenosinas/farmacologia , Imunofluorescência , Inativação Gênica , Teste de Complementação Genética , Mutação , Filogenia , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Interferência de RNA , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Tripanossomicidas/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
4.
Mol Pharmacol ; 71(3): 921-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17185380

RESUMO

Trypanosoma brucei encodes a relatively high number of genes of the equilibrative nucleoside transporter (ENT) family. We report here the cloning and in-depth characterization of one T. brucei brucei ENT member, TbNT9/AT-D. This transporter was expressed in Saccharomyces cerevisiae and displayed a uniquely high affinity for adenosine (Km = 0.068 +/- 0.013 microM), as well as broader selectivity for other purine nucleosides in the low micromolar range, but was not inhibited by nucleobases or pyrimidines. This selectivity profile is consistent with the P1 transport activity observed previously in procyclic and long-slender bloodstream T. brucei, apart from the 40-fold higher affinity for adenosine than for inosine. We found that, like the previously investigated P1 activity of long/slender bloodstream trypanosomes, the 3'-hydroxy, 5'-hydroxy, N3, and N7 functional groups contribute to transporter binding. In addition, we show that the 6-position amine group of adenosine, but not the inosine 6-keto group, makes a major contribution to binding (DeltaG0 = 12 kJ/mol), explaining the different Km values of the purine nucleosides. We further found that P1 activity in procyclic and long-slender trypanosomes is pharmacologically distinct, and we identified the main gene encoding this activity in procyclic cells as NT10/AT-B. The presence of multiple P1-type nucleoside transport activities in T. brucei brucei facilitates the development of nucleoside-based treatments for African trypanosomiasis and would delay the onset of uptake-related drug resistance to such therapy. We show that both TbNT9/AT-D and NT10/AT-B transport a range of potentially therapeutic nucleoside analogs.


Assuntos
Adenosina/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Clonagem Molecular , Inosina/metabolismo , Modelos Moleculares , Proteínas de Transporte de Nucleosídeos/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
6.
Mol Pharmacol ; 68(3): 589-95, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15933219

RESUMO

Trypanosoma brucei are unicellular parasites that cause sleeping sickness in humans and nagana in livestock. Trypanosomes salvage purines from their hosts through a variety of transporters, of which adenosine permeases deserve particular attention because of their role in drug sensitivity. T. brucei possess two distinct adenosine transport systems, P1 and P2, the latter of which also mediates cellular uptake of the drugs melarsoprol and pentamidine. Loss or mutation of P2 has been associated with drug resistance and sleeping sickness treatment failures. However, genetic disruption in Trypanosoma brucei brucei of the gene encoding P2, TbAT1, reduced the susceptibility to melarsoprol and pentamidine by only a factor of approximately 2. In this study, we show stronger phenotypes of the tbat1 null mutant with respect to its sensitivity toward toxic adenosine analogs. Compared with parental TbAT1+/+ trypanosomes, the tbat1-/- mutant is 77-fold less sensitive to tubercidin and 14-fold less sensitive to cordycepin. Resistance is further increased by the addition of inosine but is reverted by adenine. It is surprising that the tbat1-/- mutant grows faster than TbAT1+/+ trypanosomes and that it overexpresses genes of the TbNT cluster encoding P1-type transporters. These unexpected phenotypes show that there are conditions other than drug pressure under which loss of P2 may confer a selective advantage to bloodstream-form trypanosomes. Overexpression of P1 by trypanosomes after loss of P2 indicates that combinatorial chemotherapy with trypanocidal P1 and P2 substrates may be a promising strategy to prevent drug resistance in sleeping sickness.


Assuntos
Adenosina/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Sequência de Bases , Transporte Biológico , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
7.
Drug Resist Updat ; 6(5): 281-90, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14643298

RESUMO

Drug resistance in African trypanosomes has been studied for almost a hundred years. Beginning with Paul Ehrlich's work that led to the chemoreceptor hypothesis, reduction of net drug uptake has emerged as the most frequent cause of resistance. This review, therefore, focuses on trypanosomal drug transporter genes. TbAT1 encodes purine permease P2, which mediates influx of melarsoprol and diamidines. Disruption of TbAT1 in Trypanosoma brucei reduced sensitivity to these trypanocides. TbMRPA encodes a putative trypanothione-conjugate efflux pump, and overexpression of TbMRPA in T. brucei causes melarsoprol resistance. It will be important to determine the role of TbAT1 and TbMRPA in sleeping sickness treatment failures.


Assuntos
Transporte Biológico/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Animais , Transporte Biológico/genética , Relação Estrutura-Atividade , Suíça , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/metabolismo , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei rhodesiense/metabolismo , Tripanossomíase Africana/genética , Tripanossomíase Africana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...