Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 199: 114280, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588828

RESUMO

Helicobacter pylori (H. pylori) is a microorganism directly linked to severe clinical conditions affecting the stomach. The virulence factors and its ability to form biofilms increase resistance to conventional antibiotics, growing the need for new substances and strategies for the treatment of H. pylori infection. The trans-resveratrol (RESV), a bioactive polyphenol from natural sources, has a potential activity against this gastric pathogen. Here, Chitosan nanoparticles (NP) containing RESV (RESV-NP) were developed for H. pylori management. The RESV-NP were prepared using the ionic gelation method and characterized by Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA) and, Cryogenic Transmission Electron Microscopy (Cryo - TEM). The encapsulation efficiency (EE) and in vitro release rate of RESV were quantified using high-performance liquid chromatography (HPLC). RESV-NP performance against H. pylori was evaluated by the quantification of the minimum inhibitory/bactericidal concentrations (MIC/MBC), time to kill, alterations in H. pylori morphology in its planktonic form, effects against H. pylori biofilm and in an in vitro infection model. RESV-NP cytotoxicity was evaluated against AGS and MKN-74 cell lines and by hemolysis assay. Acute toxicity was tested using Galleria mellonella model assays. RESV-NP showed a spherical shape, size of 145.3 ± 24.7 nm, polydispersity index (PDI) of 0.28 ± 0.008, and zeta potential (ZP) of + 16.9 ± 1.81 mV in DLS, while particle concentration was 3.12 x 1011 NP/mL (NTA). RESV-NP EE was 72 %, with full release within the first 5 min. In microbiological assays, RESV-NP presented a MIC/MBC of 3.9 µg/mL, a time to kill of 24 h for complete eradication of H. pylori. At a concentration of 2xMIC (7.8 µg/mL), RESV-NP completely eradicated the H. pylori biofilm, and in an in vitro infection model, RESV-NP (4xMIC - 15.6 µg/mL) showed a significant decrease in bacterial load (1 Log10CFU/mL) when compared to the H. pylori J99 control. In addition, they did not demonstrate a toxic character at MIC concentration for both cell lines. The use of the RESV-NP with mucoadhesion profile is an interesting strategy for oral administration of substances targeting gastric disorders, linked to H. pylori infections.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Infecções por Helicobacter , Helicobacter pylori , Testes de Sensibilidade Microbiana , Nanopartículas , Resveratrol , Resveratrol/administração & dosagem , Resveratrol/farmacologia , Helicobacter pylori/efeitos dos fármacos , Quitosana/química , Nanopartículas/química , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Humanos , Animais , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estilbenos/farmacologia , Estilbenos/administração & dosagem , Estilbenos/química , Tamanho da Partícula
2.
J Control Release ; 348: 489-498, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35654169

RESUMO

Bacterial biofilms account for 80% of all chronic infections, with cells being up to 1000 times more resistant to antibiotics than their planktonic counterparts. The recently discovered ability of Helicobacter pylori to form biofilms once again highlights why this bacterium is one of the most successful human pathogens. The current treatments failure rate reaches 40% of cases, emphasizing that new therapeutic options are a pressing need. Nanostructured lipid carriers (NLC), with and without docosahexaenoic acid (DHA), were very effective against H. pylori planktonic cells but their effect on H. pylori biofilms was unknown. Here, DHA-loaded NLC (DHA-NLC) and NLC without any drug (blank NLC) were tested on an optimized H. pylori in vitro floating mature biofilm model. DHA-NLC and blank NLC reduced the total biofilm biomass and had a bactericidal effect against both biofilm and planktonic bacteria in all the concentrations tested (0.125-2 mg/mL). DHA-NLC achieved biofilm biomass reduction in a concentration ~ 8 times lower than blank NLC (0.125 vs 1 mg/mL, respectively). Both NLC were bactericidal at the lowest concentration tested (0.125 mg/mL) although with different efficiency, i.e. a decrease of ∼6 log10 for DHA-NLC and ∼5 log10 for blank NLC. In addition, the equivalent amount of free DHA (3.1 µM) only reduced bacterial viability in ∼2 log10, demonstrating the synergistic effect of DHA and NLC in the treatment of H. pylori biofilms. Nevertheless, although viable bacteria were not detected by colony forming unit (CFU) counting after treatment with both NLC, confocal microscopy imaging highlighted that some H. pylori cells remained alive. In addition, scanning electron microscopy (SEM) analysis confirmed an increase in bacteria with a coccoid morphology after treatment, suggesting a transition to a viable but non-culturable (VBNC) state. Altogether, it is herein established that NLC, even without any drug, are promising for the management of H. pylori bacteria organized in biofilms, opening new perspectives for the eradication of this gastric pathogen.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Nanoestruturas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Humanos , Lipídeos/uso terapêutico
3.
Pharmaceutics ; 13(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34834333

RESUMO

Prevention of orthopedic implant-related infections is a major medical challenge, particularly due to the involvement of biofilm-encased and multidrug-resistant bacteria. Current therapies, based on antibiotic administration, have proven to be insufficient, and infection prevalence may rise due to the dissemination of antibiotic resistance. Antimicrobial peptides (AMPs) have attracted attention as promising substitutes of conventional antibiotics, owing to their broad-spectrum of activity, high efficacy at very low concentrations, and, importantly, low propensity for inducing resistance. The aim of this review is to offer an updated perspective of the development of AMPs-based preventive strategies for orthopedic and dental implant-related infections. In this regard, two major research strategies are herein addressed, namely (i) AMP-releasing systems from titanium-modified surfaces and from bone cements or beads; and (ii) AMP immobilization strategies used to graft AMPs onto titanium or other model surfaces with potential translation as coatings. In overview, releasing strategies have evolved to guarantee higher loadings, prolonged and targeted delivery periods upon infection. In addition, avant-garde self-assembling strategies or polymer brushes allowed higher immobilized peptide surface densities, overcoming bioavailability issues. Future research efforts should focus on the regulatory demands for pre-clinical and clinical validation towards clinical translation.

4.
Pharmaceutics ; 13(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34834377

RESUMO

Efficient antibiotics are being exhausted, which compromises the treatment of infections, including complicated skin and skin structure infections (cSSTI) often associated with multidrug resistant (MDR) bacteria, methicillin-resistant S. aureus (MRSA) being the most prevalent. Antimicrobial peptides (AMP) are being increasingly regarded as the new hope for the post-antibiotic era. Thus, future management of cSSTI may include use of peptides that, on the one hand, behave as AMP and, on the other, are able to promote fast and correct skin rebuilding. As such, we combined the well-known cosmeceutical pentapeptide-4 (PP4), devoid of antimicrobial action but possessing collagenesis-boosting properties, with the AMP 3.1, to afford the chimeric peptide PP4-3.1. We further produced its N-methyl imidazole derivative, MeIm-PP4-3.1. Both peptide-based constructs were evaluated in vitro against Gram-negative bacteria, Gram-positive bacteria, and Candida spp. fungi. Additionally, the antibiofilm activity, the toxicity to human keratinocytes, and the activity against S. aureus in simulated wound fluid (SWF) were assessed. The chimeric peptide PP4-3.1 stood out for its potent activity against Gram-positive and Gram-negative bacteria, including against MDR clinical isolates (0.8 ≤ MIC ≤ 5.7 µM), both in planktonic form and in biofilm matrix. The peptide was also active against three clinically relevant species of Candida fungi, with an overall performance superior to that of fluconazole. Altogether, data reveal that PP4-3.1 is as a promising lead for the future development of new topical treatments for severe skin infections.

5.
Molecules ; 25(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635294

RESUMO

Antibiotic resistance is increasing and new strategies are needed to fight infection. Advanced materials are promising tools that can be combined with innovative alternatives to conventional antibiotics to allow more targeted and efficient treatment. In this work, we explored the activity against Staphylococcus epidermidis (S. epidermidis) of the α-helical antimicrobial peptide (AMP) MSI-78(4-20) (KFLKKAKKFGKAFVKIL) when covalently bound to a chitosan coating. The AMP MSI-78(4-20) (17 mer) is an improved version of its parent MSI-78 (22 mer; commercially known as Pexiganan), a cost-effective short AMP, which was demonstrated to be as effective as MSI-78 and less toxic to eukaryotic cells. An MSI-78(4-20)-chitosan coating could be applied in several infection scenarios, ranging from bone implants to wound dressings, as chitosan possesses osteoconductive and hemostatic properties. Cysteine-modified MSI-78(4-20) was covalently immobilized onto the chitosan coating through a succinimidyl-[(N-maleimidopropionamido)-octaethyleneglycol] ester (SM(PEG)8), a heterobifuncional crosslinker, with N-hydroxysuccinimide (NHS) ester and maleimide groups, by its N- and C- termini. The MSI-78(4-20)-chitosan coating demonstrated bactericidal properties independently of the tethering site and an improved performance in the presence of plasma proteins, which mimics conditions that will be encountered in vivo. This AMP-chitosan coating has therefore great potential for applications in medical devices such as implants or even wound dressings.


Assuntos
Antibacterianos/farmacologia , Proteínas Sanguíneas/química , Quitosana/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Antibacterianos/química , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Humanos , Proteínas Citotóxicas Formadoras de Poros/química , Staphylococcus epidermidis/crescimento & desenvolvimento
6.
Mar Drugs ; 17(4)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022915

RESUMO

Medical device-associated infections are a major health threat, representing about half of all hospital-acquired infections. Current strategies to prevent this problem based on device coatings with antimicrobial compounds (antibiotics or antiseptics) have proven to be insufficient, often toxic, and even promoting bacterial resistance. Herein, we report the development of an infection-preventive coating (CyanoCoating) produced with an extracellular polymer released by the marine cyanobacterium Cyanothece sp. CCY 0110. CyanoCoating was prepared by spin-coating and its bacterial anti-adhesive efficiency was evaluated against relevant etiological agents (Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa and Escherichia coli) and platelets, both in the presence or absence of human plasma proteins. CyanoCoating cytotoxicity was assessed using the L929 fibroblasts cell line. CyanoCoating exhibited a smooth topography, low thickness and high hydrophilic properties with mild negative charge. The non-cytotoxic CyanoCoating prevented adhesion of all the bacteria tested (≤80%) and platelets (<87%), without inducing platelet activation (even in the presence of plasma proteins). The significant reduction in protein adsorption (<77%) confirmed its anti-adhesive properties. The development of this anti-adhesive coating is an important step towards the establishment of a new technological platform capable of preventing medical device-associated infections, without inducing thrombus formation in blood-contacting applications.


Assuntos
Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biopolímeros/farmacologia , Cyanothece/química , Animais , Anti-Infecciosos/química , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/química , Humanos , Teste de Materiais , Camundongos , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Poliuretanos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...