Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zootaxa ; 4869(4): zootaxa.4869.4.5, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33311345

RESUMO

The systematics of the genus Hannia Vari 1978, endemic to freshwater habitats of remote north-western Australia, is revised in light of recent collections in the region and a molecular study of the group that identified an undescribed candidate species. A new freshwater fish species (Hannia wintoni sp. nov) is described based on analysis of multiple nuclear genetic markers (53 allozyme loci), mitochondrial DNA sequence data (601 bp cytochrome b) and morphology (examination of a suite of 66 morphometric and meristic characters). Head profile, postorbital length, maximum length, preopercular spines and pectoral-fin rays are characters that best distinguish H. wintoni sp. nov from its only congener, H. greewayi. While the existing description of H. greenwayi is robust and accurate, we present a number of additional characters that enhance to the original description, based on type and fresh material. Information on the known distribution, habitats and conservation status of the two species is summarised. The new species is a narrow-range endemic.


Assuntos
Ecossistema , Peixes , Animais , DNA Mitocondrial , Água Doce , Austrália Ocidental
2.
Ecol Evol ; 9(8): 4568-4588, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031928

RESUMO

The Australian freshwater fish fauna is very unique, but poorly understood. In the Australian Monsoonal Tropics (AMT) biome of northern Australia, the number of described and candidate species has nearly doubled since the last attempt to analyse freshwater fish species composition patterns and determine a bioregionalisation scheme. Here, we utilise the most complete database of catchment-scale freshwater fish distributions from the AMT to date to: (a) reanalyze spatial patterns of species richness, endemism and turnover of freshwater fishes; (b) propose a biogeographic regionalisation based on species turnover; (c) assess the relationship between species turnover and patterns of environmental change and historic drainage connectivity; and (d) identify sampling gaps. Biogeographic provinces were identified using an agglomerative cluster analysis of a Simpson's beta (ß sim) dissimilarity matrix. A generalised dissimilarity model incorporating eighteen environmental variables was used to investigate the environmental correlates of species turnover. Observed and estimated species richness and endemism were calculated and inventory completeness was estimated based on the ratio of observed to estimated species richness. Three major freshwater fish biogeographic provinces and 14 subprovinces are proposed. These differ substantially from the current bioregionalisation scheme. Species turnover was most strongly influenced by environmental variables that are interpreted to reflect changes in terrain (catchment relief and confinement), geology and climate (runoff perenniality, stream density), and biotic responses to climate (net primary productivity). Past connectivity between rivers during low sea-level events is also influential highlighting the importance of historical processes in explaining contemporary patterns of biodiversity in the AMT. The inclusion of 49 newly discovered species and candidate species only reinforced known focal points of species richness and endemism in the AMT. However, a number of key sampling gaps remain that need to be filled to fully characterise the proposed bioregionalisation.

3.
Mol Phylogenet Evol ; 127: 843-858, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29953937

RESUMO

The prevalence of unrecognised cryptic species impairs biodiversity estimates, clouds biological research and hinders conservation planning. As the rate of cryptic species detection increases globally, research is needed to determine how frequent cryptic species are, whether they are more common in given management regions, and whether these patterns are consistent across taxonomic groups. The Kimberley region in remote northwestern Australia harbours some of the most speciose, and morphologically and functionally diverse, endemic animal and plant communities on the continent. The rugged and changeable landscape also appears to contain a large proportion of cryptic terrestrial species, raising the question of whether similar patterns are also found among aquatic taxa, which have yet to be studied using integrative systematic approaches. If true, then the actual levels of aquatic biodiversity are yet to be fully realised. Here we conducted a molecular assessment of where species boundaries may exist in the Kimberley regions' most speciose freshwater fish family, the Terapontidae (grunters), with a combined morphological assessment of the regions' most speciose terapontid genus, Syncomistes. Assessment of nuclear markers (54 allozyme loci), sequence data (mitochondrial cytochrome b (cytb); nuclear recombination activation gene one (RAG1)) and 31 meristic and 36 morphometric characters provides evidence for 13 new candidate species across three different genera. Many of these candidate species are narrow range endemics. Our findings raise several questions about the evolutionary origin of the Kimberley's endemic fish fauna and highlight the likelihood that freshwater fish species diversity in the Kimberley is severely under-represented by current systematic frameworks, with significant implications for ecological research, conservation and management.


Assuntos
Biodiversidade , Peixes/classificação , Água Doce , Animais , Austrália , Teorema de Bayes , DNA Mitocondrial/genética , Análise Discriminante , Evolução Molecular , Peixes/genética , Haplótipos/genética , Funções Verossimilhança , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...