Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.551
Filtrar
2.
Front Pediatr ; 12: 1404184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091988

RESUMO

Background: Preterm birth has been associated with an increased risk of myopia, but the causal relationship between these two factors remains unclear. Traditional epidemiological studies are limited by confounding factors and reverse causality. Mendelian randomization (MR) analysis, utilizing genetic variants as instrumental variables, provides a robust approach to investigate causal relationships. In this study, we aimed to explore the potential causal link between preterm birth and myopia risk using a two-sample MR analysis strategy. Methods: We conducted a Mendelian randomization study to investigate the causal relationship between preterm birth and myopia risk. Genetic variants (single nucleotide polymorphisms, SNPs) were used as instrumental variables, and summary data from genome-wide association studies (GWAS) were utilized. Four regression models, including MR-Egger regression, weighted median regression, inverse variance weighted regression, and Weighted mode regression, were employed to validate the causal relationship. Sensitivity analysis was performed using the leave-one-out method. At the same time, the funnel diagram and MR-Egger test were used to judge the stability of the research results. Results: The MR analysis revealed a significant causal effect of preterm birth on myopia risk. Both the inverse variance weighted regression and weighted median regression models showed a p-value less than 0.05, indicating a robust association. The risk of myopia increased by approximately 30% for everyone standard deviation increase in preterm birth. Sensitivity analysis, funnel plot and MR-Egger test all confirm the stability of the research results. Conclusion: Our findings provide evidence supporting a causal relationship between preterm birth and myopia risk. Preterm infants are at a higher risk of developing myopia, and this association is not likely to be influenced by confounding factors or reverse causality. The SNP loci rs6699397, rs10871582, and rs2570497 should be closely monitored as they may lead to abnormal concentrations of intraocular cytokines, particularly vascular endothelial growth factor, potentially elucidating one of the pathogenic mechanisms contributing to the higher incidence of myopia in preterm infants. However the complex interconnections involved extend beyond these factors alone.

3.
Nature ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048826

RESUMO

Conjugated polymers promise inherently flexible and low-cost thermoelectrics for powering the Internet of Things from waste heat1,2. Their valuable applications, however, have been hitherto hindered by the low dimensionless figure of merit (ZT)3-6. Here we report high-ZT thermoelectric plastics, which were achieved by creating a polymeric multi-heterojunction with periodic dual-heterojunction features, where each period is composed of two polymers with a sub-ten-nanometre layered heterojunction structure and an interpenetrating bulk-heterojunction interface. This geometry produces significantly enhanced interfacial phonon-like scattering while maintaining efficient charge transport. We observed a significant suppression of thermal conductivity by over 60 per cent and an enhanced power factor when compared with individual polymers, resulting in a ZT of up to 1.28 at 368 kelvin. This polymeric thermoelectric performance surpasses that of commercial thermoelectric materials and existing flexible thermoelectric candidates. Importantly, we demonstrated the compatibility of the polymeric multi-heterojunction structure with solution coating techniques for satisfying the demand for large-area plastic thermoelectrics, which paves the way for polymeric multi-heterojunctions towards cost-effective wearable thermoelectric technologies.

4.
Comput Struct Biotechnol J ; 23: 2746-2753, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39050785

RESUMO

The advent of single cell transposase-accessible chromatin sequencing (scATAC-seq) technology enables us to explore the genomic characteristics and chromatin accessibility of blood cells at the single-cell level. To fully make sense of the roles and regulatory complexities of blood cells, it is critical to collect and analyze these rapidly accumulating scATAC-seq datasets at a system level. Here, we present scBlood (https://bio.liclab.net/scBlood/), a comprehensive single-cell accessible chromatin database of blood cells. The current version of scBlood catalogs 770,907 blood cells and 452,247 non-blood cells from ∼400 high-quality scATAC-seq samples covering 30 tissues and 21 disease types. All data hosted on scBlood have undergone preprocessing from raw fastq files and multiple standards of quality control. Furthermore, we conducted comprehensive downstream analyses, including multi-sample integration analysis, cell clustering and annotation, differential chromatin accessibility analysis, functional enrichment analysis, co-accessibility analysis, gene activity score calculation, and transcription factor (TF) enrichment analysis. In summary, scBlood provides a user-friendly interface for searching, browsing, analyzing, visualizing, and downloading scATAC-seq data of interest. This platform facilitates insights into the functions and regulatory mechanisms of blood cells, as well as their involvement in blood-related diseases.

5.
Front Immunol ; 15: 1411301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050842

RESUMO

Ischemic heart disease (IHD) can trigger responses from the innate immune system, provoke aseptic inflammatory processes, and result in the recruitment and accumulation of neutrophils. Excessive recruitment of neutrophils is a potential driver of persistent cardiac inflammation. Once recruited, neutrophils are capable of secreting a plethora of inflammatory and chemotactic agents that intensify the inflammatory cascade. Additionally, neutrophils may obstruct microvasculature within the inflamed region, further augmenting myocardial injury in the context of IHD. Immune-related molecules mediate the recruitment process of neutrophils, such as immune receptors and ligands, immune active molecules, and immunocytes. Non-immune-related molecular pathways represented by pro-resolving lipid mediators are also involved in the regulation of NR. Finally, we discuss novel regulating strategies, including targeted intervention, agents, and phytochemical strategies. This review describes in as much detail as possible the upstream molecular mechanism and external intervention strategies for regulating NR, which represents a promising therapeutic avenue for IHD.


Assuntos
Isquemia Miocárdica , Infiltração de Neutrófilos , Neutrófilos , Humanos , Isquemia Miocárdica/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Infiltração de Neutrófilos/imunologia , Animais , Inflamação/imunologia , Imunidade Inata , Mediadores da Inflamação/metabolismo
6.
Lasers Med Sci ; 39(1): 193, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052099

RESUMO

Laser therapy has been widely used to treat port-wine stains (PWS) and other cutaneous vascular lesions via selective photothermolysis. Animal models are a valuable tool for investigating thermal responses beneath the skin. However, in previous animal experiments, such as the dorsal skin chamber model, one side of the skin was removed, resulting in the loss of mechanical support for the target blood vessel. In this study, the optical clearing technique was applied to the dorsal skin, allowing direct observation of real thermal responses within the tissue without removing the covering skin. The target blood vessels were irradiated with a pulsed 1064 nm Nd: YAG laser. The corresponding thermal responses were recorded using a CCD camera. Additionally, variations in skin reflectance spectra were measured before and after laser irradiation. Due to the optical clearing and reflectance spectra measurement, vessel responses such as contraction, reperfusion, and full occlusion were correlated with specific variation patterns in reflectance spectral signals.


Assuntos
Lasers de Estado Sólido , Pele , Animais , Pele/efeitos da radiação , Pele/irrigação sanguínea , Lasers de Estado Sólido/uso terapêutico , Vasos Sanguíneos/efeitos da radiação , Análise Espectral/métodos , Mancha Vinho do Porto/radioterapia
7.
Ageing Res Rev ; : 102440, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059477

RESUMO

Transposable elements (TEs) are essential components of eukaryotic genomes and are subject to stringent regulatory mechanisms to avoid their potentially deleterious effects. However, numerous studies have verified the resurrection of TEs, particularly long interspersed nuclear element-1 (LINE-1), during preimplantation development, aging, cancer, and other age-related diseases. The LINE-1 family has also been implicated in several aging-related processes, including genomic instability, loss of heterochromatin, DNA methylation, and the senescence-associated secretory phenotype (SASP). Additionally, the role of the LINE-1 family in cancer development has also been substantiated. Research in this field has offered valuable insights into the functional mechanisms underlying LINE-1 activity, enhancing our understanding of aging regulation. This review provides a comprehensive summary of current findings on LINE-1 and their roles in aging and age-related diseases.

8.
Nano Lett ; 24(29): 8996-9003, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38995813

RESUMO

Interventional therapy is widely regarded as a highly promising treatment approach for nonsurgical liver cancer. However, the development of drug resistance and tolerance to hypoxic environments after embolization can lead to increased angiogenesis, enhanced tumor cell stemness, and greater invasiveness, resulting in metastasis and recurrence. To address these challenges, a novel approach involving the use of lecithin and DSPE-PEG comodified Ca2+ loaded (NH4)2S2O8 (LDCNSO) drug in combination with transcatheter arterial embolization (TAE) has been proposed. The sono-blasting effect of LDCNSO under ultrasound triggers a cascading amplification of oxidative stress, by releasing sulfate radical (·SO4-), hydroxyl radical (·OH), and superoxide (·O2-), inducing Ca2+ overload, and reducing glutathione (GSH) levels, which eventually leads to apoptosis. LDCNSO alongside TAE has demonstrated remarkable therapeutic efficacy in the rabbit orthotopic cancer model, resulting in significant inhibition of tumor growth. This research provides valuable insights for the effective treatment of orthotopic tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Humanos , Coelhos , Apoptose/efeitos dos fármacos , Embolização Terapêutica/métodos , Linhagem Celular Tumoral , Glutationa/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico
9.
Eur Spine J ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044021

RESUMO

OBJECTIVE: The Femoro-Sacral Posterior Angle (FSPA) system and the pelvic incidence (PI) system are utilized for measuring sagittal spino-pelvic morphology in patients with high-dysplastic developmental spondylolisthesis (HDDS). This study aimed to analyze the accuracy and stability of these two systems. METHODS: A retrospective analysis was conducted on 45 patients diagnosed with HDDS who underwent surgical treatment at our hospital (HDDS group), along with 45 patients without spondylolisthesis (normal group). Three orthopedic surgeons utilized the FSPA and PI systems to measure various parameters, including FSPA, pelvic angle(PA), sacral incidence (SI), PI, pelvic tilt (PT), and sacral slope (SS), respectively. The intraclass correlation coefficient (ICC) was employed to assess the inter-observer consistency of measurements. RESULTS: There was significant differences in all the parameters between the normal and HDDS groups (p < 0.05), except for SS (p = 0.508). Specifically, SI was lower in HDDS group than in the normal group (23.0 ± 13.4 vs. 38.6 ± 7.1), whereas SS was higher (35.3 ± 15.7 vs. 33.6 ± 7.4). Within HDDS group, there was no statistically significant difference in PI (p = 0.159), SS (p = 0.319), and FSPA (p = 0.173) between pre- and post-surgery measurements. The ICC results indicated superior reliability for the FSPA system (0.842-0.885) compared to the PI system (0.682-0.720) within the HDDS group. CONCLUSION: Compared with the PI system, the FSPA system demonstrated higher accuracy in evaluating spino-pelvic morphology in HDDS patients. Moreover, it exhibited higher ICC values, indicating higher inter-observer reliability, thus serving as an effective method for assessing spino-pelvic morphology in HDDS patients.

10.
J Environ Manage ; 366: 121907, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39047433

RESUMO

With the development of machine learning and artificial intelligence (ML/AI) models, data-driven soft sensors, especially the neural network-based, have widespread utilization for the prediction of key water quality indicators in wastewater treatment plants (WWTPs). However, recent research indicates that the prediction performance and computational efficiency are greatly compromised due to the time-varying, nonlinear and high-dimensional nature of the wastewater treatment process. This paper proposes a neural network-based soft sensor with double-errors parallel optimization to achieve more accurate prediction for effluent variables timely. Firstly, relying on the Activity Based Classification (ABC) principle, an ensemble variable selection method that combines Pearson correlation coefficient (PCC) and mutual information (MI) is introduced to select the optimal process variables as auxiliary variables, thereby reducing the data dimensionality and simplifying the model complexity. Subsequently, a double-errors parallel optimization methodology with minimizing both point prediction error and distribution error simultaneously is proposed, aiming to enhancing the training efficiency and the fitting quality of neural networks. Finally, the effectiveness is quantitatively assessed in two datasets collected from the Benchmark Simulation Model no. 1 (BMS1) and an actual oxidation ditch WWTP. The experimental results illustrate that the proposed soft sensor achieves precise effluent variable prediction, with RMSE, MAE and R2 values being 0.0606, 0.0486, 0.99930, and 0.06939, 0.05381, 0.98040, respectively. Consequently, this soft sensor can expedite the convergence speed in the neural network training process and enhance the prediction performance, thereby contributing to the effective optimization management of WWTPs.

11.
Lancet Reg Health West Pac ; 48: 101112, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978965

RESUMO

Background: Urban living is linked to better health outcomes due to a combination of enhanced access to healthcare, transportation, and human development opportunities. However, spatial inequalities lead to disparities, resulting in urban health advantages and penalties. Understanding the relationship between health and urban development is needed to generate empirical evidence in promoting healthy aging populations. This study provides a comparative analysis using epidemiological evidence across diverse major Chinese cities, examining how their unique urban development trajectories over time have impacted the health of their aging residents. Methods: We tracked changes in air pollution (NO2, PM2.5, O3), green space (measured by NDVI), road infrastructure (ring road areas), and nighttime lighting over 20 years in six major cities in China. We followed a longitudinal cohort of 4992 elderly participants (average age 87.8 years) over 16,824 person-years. We employed Cox proportional hazard regression to assess longevity, assessing 14 variables, including age, sex, ethnicity, marital status, residence, household income, occupation, education, smoking, alcohol consumption, exercise, and points of interest (POI) count of medicine-related facilities, sports, and leisure service-related places, and scenic spots within a 5 km-radius buffer. Findings: Geographic proximity to points of interest significantly improves survival. Elderly living in proximity of the POI-rich areas had a 34.6%-35.6% lower mortality risk compared to those in POI-poor areas, for the highest compared to the lowest quartile. However, POI-rich areas had higher air pollution levels, including PM2.5 and NO2, which was associated with a 21% and 10% increase in mortality risk for increase of 10 µg/m3, respectively. The benefits of urban living had higher effect estimates in monocentric cities, with clearly defined central areas, compared to polycentric layouts, with multiple satellite city centers. Interpretation: Spatial inequalities create urban health advantages for some and penalties for others. Proximity to public facilities and economic activities is associated with health benefits, and may counterbalance the negative health impacts of lower green space and higher air pollution. Our empirical evidence show optimal health gains for age-friendly urban environments come from a balance of infrastructure, points of interest, green spaces, and low air pollution. Funding: Natural Science Foundation of Beijing (IS23105), National Natural Science Foundation of China (82250610230, 72061137004), World Health Organization (2024/1463606-0), Research Fund Vanke School of Public Health Tsinghua University (2024JC002), Beijing TaiKang YiCai Public Welfare Foundation, National Key R&D Program of China (2018YFC2000400).

12.
ACS Appl Mater Interfaces ; 16(28): 36923-36934, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38963067

RESUMO

The absorption-dominated graphene porous materials, considered ideal for mitigating electromagnetic pollution, encounter challenges related to intricate structural design. Herein, petal-like graphene porous films with dendritic-like and honeycomb-like pores are prepared by controlling the phase inversion process. The theoretical simulation and experimental results show that PVP K30 modified on the graphene surface via van der Waals interactions promotes graphene to be uniformly enriched on the pore walls. Benefiting from the regulation of graphene distribution and the construction of honeycomb pore structure, when 15 wt % graphene is added, the porous film exhibits absorption-dominated electromagnetic shielding performance, compared with the absence of PVP K30 modification. The total electromagnetic shielding effectiveness is 24.1 dB, an increase of 170%; the electromagnetic reflection coefficient reduces to 2.82 dB; The thermal conductivity reaches 1.1 W/(m K), representing a 104% increase. In addition, the porous film exhibits improved mechanical properties, the tensile strength increases to 6.9 MPa, and the elongation at break increases by 131%. The method adopted in this paper to control the enrichment of graphene in the pore walls during the preparation of honeycomb porous films by the phase inversion method can avoid the agglomeration of graphene and improve the overall performance of the porous graphene porous films.

13.
Chemosphere ; 363: 142833, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002654

RESUMO

In this study, we examined the aging characteristics of polyethylene (PE) and polylactic acid (PLA) microplastics (MPs), examining the adsorption behaviors and mechanisms concerning Cd(II) and Cr(VI) under both single and binary systems. The results revealed that aging treatment changed the physicochemical properties of MPs. The aging mechanisms of PLA and PE MPs were shown to be similar by the 2D-FTIR-COS study. These mechanisms involve the formation of oxygen-containing functional groups through the combination of carbon chain breakdown and oxygen. Aged MPs had a greater ability to adsorb metal ions than pristine MPs, with PLA MPs outperforming PE MPs. After 30 days of aging, Cd(II) adsorption increased by 40.61 % and 25.49 % for PE and PLA MPs, respectively, while Cr(VI) adsorption increased by 37.50 % and 69.29 %, respectively. The adsorption ability of PE and PLA MPs with Cd(II) or Cr(VI) under binary systems was less than that under single systems, with Cd(II) exhibiting more adsorption competitiveness than Cr(VI). Humic acid (HA), ionic species and strength, solution pH, and adsorption of Cd(II) and Cr(VI) were found to be significantly correlated. Further investigation into the adsorption mechanisms of Cd(II) and Cr(VI) on PE and PLA MPs revealed that pore-filling, electrostatic interactions, complexation, and hydrogen bonding play important roles in the adsorption process. The study's conclusions are crucial for assessing the risk associated with concurrent contamination by metal ions and microplastics.

14.
MedComm (2020) ; 5(8): e660, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39015555

RESUMO

Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.

15.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000525

RESUMO

Abiotic stress, especially drought stress, poses a significant threat to terrestrial plant growth, development, and productivity. Although mulberry has great genetic diversity and extensive stress-tolerant traits in agroforestry systems, only a few reports offer preliminary insight into the biochemical responses of mulberry leaves under drought conditions. In this study, we performed a comparative metabolomic and transcriptomic analysis on the "drooping mulberry" (Morus alba var. pendula Dippel) under PEG-6000-simulated drought stress. Our research revealed that drought stress significantly enhanced flavonoid accumulation and upregulated the expression of phenylpropanoid biosynthetic genes. Furthermore, the activities of superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) content were elevated. In vitro enzyme assays and fermentation tests indicated the involvement of flavonol synthase/flavanone 3-hydroxylase (XM_010098126.2) and anthocyanidin 3-O-glucosyltransferase 5 (XM_010101521.2) in the biosynthesis of flavonol aglycones and glycosides, respectively. The recombinant MaF3GT5 protein was found to recognize kaempferol, quercetin, and UDP-glucose as substrates but not 3-/7-O-glucosylated flavonols and UDP-rhamnose. MaF3GT5 is capable of forming 3-O- and 7-O-monoglucoside, but not di-O-glucosides, from kaempferol. This implies its role as a flavonol 3, 7-O-glucosyltransferase. The findings from this study provided insights into the biosynthesis of flavonoids and could have substantial implications for the future diversified utilization of mulberry.


Assuntos
Secas , Flavonoides , Regulação da Expressão Gênica de Plantas , Morus , Folhas de Planta , Proteínas de Plantas , Morus/genética , Morus/metabolismo , Flavonoides/metabolismo , Flavonoides/biossíntese , Folhas de Planta/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Perfilação da Expressão Gênica , Quempferóis/metabolismo , Oxigenases de Função Mista , Oxirredutases
16.
Food Chem ; 459: 140439, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003853

RESUMO

Elevated CO2 was a potential strategy for strawberry preservation. However, the regulatory mechanism remained unclear. In current study, transcriptome analysis showed that elevated CO2 played important roles in regulating strawberry fruit quality at the transcriptional level, and plant hormones metabolism at least partially involved in the regulatory process. Further, ABA was demonstrated to play important roles in the response to elevated CO2. Elevated CO2 inhibited the accumulation of ABA, which was 61% lower than that in control. Elevated CO2 repressed ABA synthesis by inhibiting NCED activity and the expression of FaNCED1/2, leading to the reduction of ABA accumulation as a result. Meanwhile, elevated CO2 also decreased ABA sensitivity by down-regulating FaSnRK2.4/2.6 and FaABI5 expression. The dual down-regulation of ABA signaling accounted for the regulation of fruit quality under elevated CO2 treatment. These results provide new insights into the mechanism of strawberry fruit response to elevated CO2.

17.
World J Clin Cases ; 12(19): 3800-3806, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38994310

RESUMO

BACKGROUND: Hypocalcemia is highly common in hospitalized patients, especially in those with trauma, On the other hand, abnormal calcium metabolism is an important metabolic challenge; however, it is often neglected and untreated, and certain factors may induce serious neurological and cardiovascular complications. AIM: To retrospectively analyze the impact of hypocalcemia on the prognosis of patients with multiple traumas. METHODS: The study was conducted from January 2020 to December 2021. Ninety-nine patients with multiple injuries were treated at the critical care medicine department of Fuyang People's Hospital. The selected indicators included sex, age, and blood calcium and hematocrit levels. Many indicators were observed, including within 24 h of hospitalization, and the prognosis was collected after 28 d. Based on the blood calcium levels, the patients were divided into the following two groups: Normocalcemia and hypocalcemia. Of the 99 patients included, 81 had normocalcemia, and 18 had hypocalcemia. Separate experiments were conducted for these two groups. RESULTS: There was an association between serum calcium levels and the prognosis of patients with polytrauma. CONCLUSION: Clinically, the prognosis of patients with multiple traumas can be preliminarily evaluated based on serum calcium levels.

18.
Cell Death Differ ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009654

RESUMO

Dysregulated metabolism, cell death, and inflammation contribute to the development of metabolic dysfunction-associated steatohepatitis (MASH). Pyroptosis, a recently identified form of programmed cell death, is closely linked to inflammation. However, the precise role of pyroptosis, particularly gasdermin-E (GSDME), in MASH development remains unknown. In this study, we observed GSDME cleavage and GSDME-associated interleukin-1ß (IL-1ß)/IL-18 induction in liver tissues of MASH patients and MASH mouse models induced by a choline-deficient high-fat diet (CDHFD) or a high-fat/high-cholesterol diet (HFHC). Compared with wild-type mice, global GSDME knockout mice exhibited reduced liver steatosis, steatohepatitis, fibrosis, endoplasmic reticulum stress, lipotoxicity and mitochondrial dysfunction in CDHFD- or HFHC-induced MASH models. Moreover, GSDME knockout resulted in increased energy expenditure, inhibited intestinal nutrient absorption, and reduced body weight. In the mice with GSDME deficiency, reintroduction of GSDME in myeloid cells-rather than hepatocytes-mimicked the MASH pathologies and metabolic dysfunctions, as well as the changes in the formation of neutrophil extracellular traps and hepatic macrophage/monocyte subclusters. These subclusters included shifts in Tim4+ or CD163+ resident Kupffer cells, Ly6Chi pro-inflammatory monocytes, and Ly6CloCCR2loCX3CR1hi patrolling monocytes. Integrated analyses of RNA sequencing and quantitative proteomics revealed a significant GSDME-dependent reduction in citrullination at the arginine-114 (R114) site of dynamin-related protein 1 (Drp1) during MASH. Mutation of Drp1 at R114 reduced its stability, impaired its ability to redistribute to mitochondria and regulate mitophagy, and ultimately promoted its degradation under MASH stress. GSDME deficiency reversed the de-citrullination of Drp1R114, preserved Drp1 stability, and enhanced mitochondrial function. Our study highlights the role of GSDME in promoting MASH through regulating pyroptosis, Drp1 citrullination-dependent mitochondrial function, and energy balance in the intestine and liver, and suggests that GSDME may be a potential therapeutic target for managing MASH.

19.
Molecules ; 29(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38999078

RESUMO

Cesium doped WO3 (Cs-WO3) photocatalyst with high and stable oxidation activity was successfully synthesized by a one-step hydrothermal method using Cs2CO3 as the doped metal ion source and tungstic acid (H2WO4) as the tungsten source. A series of analytical characterization tools and oxygen precipitation activity tests were used to compare the effects of different additions of Cs2CO3 on the crystal structure and microscopic morphologies. The UV-visible diffuse reflectance spectra (DRS) of Cs-doped material exhibited a significant red shift in the absorption edge with new shoulders appearing at 440-520 nm. The formation of an oxygen vacancy was confirmed in Cs-WO3 by the EPR signal, which can effectively regulate the electronic structure of the catalyst surface and contribute to improving the activity of the oxygen evolution reaction (OER). The photocatalytic OER results showed that the Cs-WO3-0.1 exhibited the optimal oxygen precipitation activity, reaching 58.28 µmol at 6 h, which was greater than six times higher than that of WO3-0 (9.76 µmol). It can be attributed to the synergistic effect of the increase in the conduction band position of Cs-WO3-0.1 (0.11 V) and oxygen vacancies compared to WO3-0, which accelerate the electron conduction rate and slow down the rapid compounding of photogenerated electrons-holes, improving the water-catalytic oxygen precipitation activity of WO3.

20.
Opt Lett ; 49(14): 3970-3973, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008753

RESUMO

Monolayer tungsten selenide (WSe2) has attracted attention due to its direct bandgap-generated strong light emission and light-matter interaction. Herein, vertical WSe2/VOCl bilayer heterojunctions with enhanced PL of WSe2 were synthesized by the vapor growth method. The morphology, crystal structure, and chemical composition of the WSe2/VOCl heterojunctions were systematically investigated, which confirmed the successful formation of the heterojunctions. The PL emission intensity of WSe2 obtained from the WSe2/VOCl heterojunction was about 2.4 times higher than that of the WSe2 monolayer, demonstrating the high optical quality of the WSe2/VOCl heterojunction, which was further confirmed by time-resolved PL measurements. The insulator top VOCl, which was deposited on the surface of the semiconductor bottom WSe2 as a surface passivation material, reducing the impurities and resulting in an atomically clean surface, successfully enhanced the PL emission of the bottom WSe2. This vertical WSe2/VOCl bilayer heterojunction with PL enhancement could provide a promising platform for optical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...