Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.718
Filtrar
1.
J Environ Sci (China) ; 147: 259-267, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003045

RESUMO

Arsenic (As) pollution in soils is a pervasive environmental issue. Biochar immobilization offers a promising solution for addressing soil As contamination. The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar. However, the influence of a specific property on As immobilization varies among different studies, and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge. To enhance immobilization efficiency and reduce labor and time costs, a machine learning (ML) model was employed to predict As immobilization efficiency before biochar application. In this study, we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models. The results demonstrated that the random forest (RF) model outperformed gradient boost regression tree and support vector regression models in predictive performance. Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization. These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils. Furthermore, the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization. These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.


Assuntos
Arsênio , Carvão Vegetal , Aprendizado de Máquina , Poluentes do Solo , Solo , Carvão Vegetal/química , Arsênio/química , Poluentes do Solo/química , Poluentes do Solo/análise , Solo/química , Modelos Químicos
2.
Neural Regen Res ; 20(2): 424-439, 2025 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819046

RESUMO

Alzheimer's disease is a debilitating, progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins, including amyloid plaques and intracellular tau tangles, primarily within the brain. Lysosomes, crucial intracellular organelles responsible for protein degradation, play a key role in maintaining cellular homeostasis. Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer's disease. Currently, the efficacy of drugs in treating Alzheimer's disease is limited, with major challenges in drug delivery efficiency and targeting. Recently, nanomaterials have gained widespread use in Alzheimer's disease drug research owing to their favorable physical and chemical properties. This review aims to provide a comprehensive overview of recent advances in using nanomaterials (polymeric nanomaterials, nanoemulsions, and carbon-based nanomaterials) to enhance lysosomal function in treating Alzheimer's disease. This review also explores new concepts and potential therapeutic strategies for Alzheimer's disease through the integration of nanomaterials and modulation of lysosomal function. In conclusion, this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer's disease. The application of nanotechnology to the development of Alzheimer's disease drugs brings new ideas and approaches for future treatment of this disease.

3.
Chemistry ; : e202402264, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981862

RESUMO

Modular synthesis can combine different functional module to flexibly regulate comprehensive properties and study the diversity of compounds. This study established a modular bicyclic synthesis strategy of combining polynitro energetic module with iodine-containing biocidal module. Compounds 1-6 with high iodine content (48.72-69.56%) and high thermal stability (Td: 172-304 ˚C) were synthesized and exhaustively identified. By modular synthesis, the detonation properties and gas-production of 3-6 improved greatly expanding their biocidal efficacy and maintained the iodine atomic utilization of iodine-containing module. Notably, 4,5-diiodo-3,4',5'-trinitro-1,3'-bipyrazole (5) and 3,5-diiodo-4,4',5'-trinitro-1,3'-bipyrazole (6) exhibit high detonation velocities (D: 5903 m s-1, 5769 m s-1, respectively) and highest gas production of 212.85 L mol-1 and 217.66 L mol-1 after decomposition. This study diversifies polyiodio-nitro compounds, and also inspire the implementation of similar synthesis strategies to provide family-level synthetic solutions to energetic biocidal materials.

4.
Food Chem ; 458: 140316, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968711

RESUMO

To enhance curcumin's application in photodynamic inactivation (PDI) of liquid foods, a supramolecular complex of biotin-modified ß-cyclodextrin and curcumin (Biotin-CD@Cur) was synthesized. This complex significantly improves curcumin's solubility, stability, and PDI efficiency. Following PDI, Biotin-CD@Cur can be magnetically separated from the liquid matrix using streptavidin-coated magnetic beads (SA-MBs). Leveraging the reversible binding between streptavidin and biotin, Biotin-CD@Cur and SA-MBs fully dissociate in ultrapure water at 70 °C, enabling reuse. Antibacterial tests in freshly squeezed orange juice demonstrated that a low dose of 1.5 J/cm2 from a 420 nm LED array and 10 µg/mL of Biotin-CD@Cur achieved log reductions of 3.287 ± 0.015 for Staphylococcus aureus and 2.961 ± 0.011 for Listeria monocytogenes, while preserving the juice's flavor and nutritional contents. The PDI system remained effective for at least four cycles. Ultra-performance liquid chromatography and atomic absorption spectroscopy confirmed no residues of system components in the juice after magnetic separation.

5.
Nat Prod Res ; : 1-11, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015011

RESUMO

Three new compounds 1-glyceryl 9(ß), 10(α), 11(ß)-trihydroxy-12(Z)-octadecenoate, 2'S-20-O-p-hydroxyphenylpropionyloxy-20-hyd-roxyarachidic acid glycerol ester (2), 3-O-α-l-arabinopyranosyl-(1→6)-ß-d-glucopyranoside of ethyl (3S)-hydroxybutanoate (3), as well as a new natural product (4) were isolated from the fruits of Solanum virginianum L. The structures of 26 compounds were determined by comprehensive spectroscopic analyses, NMR calculation, chemical methods, and comparisons of spectroscopic data. Compounds 2 and 16 exhibited good anti-inflammatory activity in the LPS-induced RAW 264.7 inflammatory model with IC50 values of 16.75 ± 1.54 and 22.43 ± 2.01 µM, respectively.

6.
World J Clin Cases ; 12(19): 3671-3675, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38994317

RESUMO

This editorial provides insights from a case report by Sun et al published in the World Journal of Clinical Cases. The case report focuses on a case where a multilocular thymic cyst (MTC) was misdiagnosed as a thymic tumor, resulting in an unnecessary surgical procedure. Both MTCs and thymic tumors are rare conditions that heavily rely on radiological imaging for accurate diagnosis. However, the similarity in their imaging presentations can lead to misinterpretation, resulting in unnecessary surgical procedures. Due to the ongoing lack of comprehensive knowledge about MTCs and thymic tumors, we offer a summary of diagnostic techniques documented in recent literature and examine potential causes of misdiagnosis. When computer tomography (CT) values surpass 20 Hounsfield units and display comparable morphology, there is a risk of misdiagnosing MTCs as thymic tumors. Employing various differential diagnostic methods like biopsy, molecular biology, multi-slice CT, CT functional imaging, positron emission tomography/CT molecular functional imaging, magnetic resonance imaging and radiomics, proves advantageous in reducing clinical misdiagnosis. A deeper understanding of these conditions requires increased attention and exploration by healthcare providers. Moreover, the continued advancement and utilization of various diagnostic methods are expected to enhance precise diagnoses, provide appropriate treatment options, and improve the quality of life for patients with thymic tumors and MTCs in the future.

7.
Eur Radiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990324

RESUMO

OBJECTIVES: To compare the diagnostic performance of three readers using BI-RADS and Kaiser score (KS) based on mass and non-mass enhancement (NME) lesions. METHODS: A total of 630 lesions, 393 malignant and 237 benign, 458 mass and 172 NME, were analyzed. Three radiologists with 3 years, 6 years, and 13 years of experience made diagnoses. 596 cases had diffusion-weighted imaging, and the apparent diffusion coefficient (ADC) was measured. For lesions with ADC > 1.4 × 10-3 mm2/s, the KS was reduced by 4 as the modified KS +, and the benefit was assessed. RESULTS: When using BI-RADS, AUC was 0.878, 0.915, and 0.941 for mass, and 0.771, 0.838, 0.902 for NME for Reader-1, 2, and 3, respectively, better for mass than for NME. The diagnostic accuracy of KS was improved compared to BI-RADS for less experienced readers. For Reader-1, AUC was increased from 0.878 to 0.916 for mass (p = 0.005) and from 0.771 to 0.822 for NME (p = 0.124). Based on the cut-off value of BI-RADS ≥ 4B and KS ≥ 5 as malignant, the sensitivity of KS by Readers-1 and -2 was significantly higher for both Mass and NME. When ADC was considered to change to modified KS +, the AUC and the accuracy for all three readers were improved, showing higher specificity with slightly degraded sensitivity. CONCLUSION: The benefit of KS compared to BI-RADS was most noticeable for the less experienced readers in improving sensitivity. Compared to KS, KS + can improve specificity for all three readers. For NME, the KS and KS + criteria need to be further improved. CLINICAL RELEVANCE STATEMENT: KS provides an intuitive method for diagnosing lesions on breast MRI. BI-RADS and KS face greater difficulties in evaluating NME compared to mass lesions. Adding ADC to the KS can improve specificity with slightly degraded sensitivity. KEY POINTS: KS provides an intuitive method for interpreting breast lesions on MRI, most helpful for novice readers. KS, compared to BI-RADS, improved sensitivity in both mass and NME groups for less experienced readers. NME lesions were considered during the development of the KS flowchart, but may need to be better defined.

8.
BMC Public Health ; 24(1): 1844, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987791

RESUMO

OBJECTIVE: The potential mechanisms linking social participation and depressive symptoms in Chinese individuals with multimorbidity are not yet fully understood. This study aims to explore how cognitive function and activities of daily living (ADLs) mediate the relationship between social participation and depressive symptoms in individuals with multimorbidity. METHODS: We selected 3782 participants with multimorbidity from the 2018 China Health and Retirement Longitudinal Study. Data related to social participation, cognitive function, ADLs, and depressive symptoms were extracted. Regression and Bootstrap analyses were used to explore the sequential mediating effects of social participation, cognitive function, ADLs, and depressive symptoms. RESULTS: (1) There was a significant correlation between social participation, cognitive function, activities of daily living, and depressive symptoms (p < 0.01). (2) Social participation directly affected depressive symptoms (ß = -0.205, p < 0.05). (3) Cognitive function (ß = -0.070, p < 0.01) and activities of daily living (ß = -0.058, p < 0.01) played separate mediating roles in the effect of social participation on depressive symptoms. (4) Cognitive function and activities of daily living had a chain-mediated role in the relationship between social participation and depressive symptoms in patients with multimorbidity (ß = -0.020, p < 0.01). CONCLUSION: A chained mediating effect was found between cognitive function, ADLs, social participation, and depressive symptoms in patients with multimorbidity. Social participation was found to improve the cognitive function of patients with multimorbidity, which in turn enhanced their daily life activities and ultimately alleviated their depressive symptoms.


Assuntos
Atividades Cotidianas , Cognição , Depressão , Multimorbidade , Participação Social , Humanos , Atividades Cotidianas/psicologia , Participação Social/psicologia , Masculino , Feminino , Depressão/epidemiologia , Depressão/psicologia , Idoso , China/epidemiologia , Estudos Longitudinais , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
9.
J Hazard Mater ; 476: 135131, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39018593

RESUMO

Extracting clean water from oily wastewater and seawater is one of the effective strategies to alleviate the freshwater crisis. However, achieving both high separation efficiency and excellent salt resistance remain challenges for materials. Herein, a novel methyltrichlorosilane-modified polyvinyl alcohol/cellulose aerogel (MPCA) was prepared by freeze drying, chemical cross-linking, and chemical vapor deposition (CVD) methods. The superwetting MPCA presented an asymmetric structure, in which the small dense pores at the top surface facilitated the efficient separation of water-in-oil (W/O) emulsions and the large pores on the bottom surface were beneficial for brine exchange. The as-prepared superwetting aerogel was suitable for the separation of various W/O emulsions with excellent separation flux (631.9-2368.7 L·m-2·h-1) and outstanding separation efficiency (99.5 %). In addition, MPCA achieved a high evaporation efficiency of 1.39 kg·m-2·h-1 and a satisfactory energy conversion efficiency of 89.7 %. Moreover, the unique asymmetric structure endowed the evaporator excellent salt resistance and could self-dissolve the accumulated salt in 20 min. The as-prepared MPCA could achieve efficient W/O emulsion separation as well as produce freshwater in seawater, providing a new strategy for oily waste seawater purification.

10.
Chemosphere ; : 142855, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019195

RESUMO

This study aimed to design an efficient and easily collected/regenerated adsorbent for trace concentration sulfamethoxazole (SMX) removal to eliminate its negative impacts on human health, reduce the risk of adsorbed SMX release and boost the reusability of adsorbent. Various multiple modified sludge-derived biochars (SBC) were synthesized in this work and applied to adsorb trace level SMX. The results demonstrated that hydrothermal N-doping, magnetization coupled with ball milling co-functionalized SBC (BMNSBC) displayed the greater adsorption ability for SMX. The maximum adsorption capacity of BMNSBC for SMX calculated by Langmuir model was 1.02×105 µg/g, which was 12.9 times of SBC. Characterization combined with adsorption experiments (e.g., models fitting) and DFT calculation confirmed that π-π conjugation, Lewis acid-base, pore filling and Fe3O4 complexation were the primary forces driving SMX binding to BMNSBC. These diversified physicochemical forces contributed to the fine anti-interference of BMNSBC to background substances (e.g., inorganic compounds and organic matter) and its remarkable adsorption ability for SMX in diverse real waters. The great magnetization strength of BMNSBC was advantage for its collection and efficient regeneration by NaOH desorption. Additionally, BMNSBC exhibited a outstanding security in view of its low leaching levels of iron (Fe) and total nitrogen (TN). The multiple superiority of BMNSBC enable it to be a prospective material for emerging contaminants (e.g., SMX) purification, also offering a feasible disposal approach for municipal waste (e.g., sludge).

11.
Cancer Immunol Res ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023168

RESUMO

Surgical resection is a primary treatment option for triple-negative breast cancer (TNBC) patients, but it is associated with a high rate of postoperative local and metastatic relapse. Although chimeric antigen receptor-engineered natural killer (CAR-NK) cell therapy can specifically recognize and eradicate tumor cells, its therapeutic potency toward TNBCs is markedly suppressed by the hostile tumor microenvironment, which restricts the infiltration, survival and effector functions of CAR-NK cells inside the tumor masses. Herein, HER1-overexpressing TNBC-targeted CAR-NK (HER1-CAR-NK) cells were genetically engineered with catalase to endow them with tolerance toward the high levels of oxidative stress and hypoxia inside TNBC tumors through the catalytic decomposition of hydrogen peroxide, which is a principle reactive oxygen species inside tumors, into O2. We refer to these cells as HER1-CAR-CAT-NK cells. Upon intratumoral fixation with an injectable alginate hydrogel, HER1-CAR-CAT-NK cells enabled sustained tumor hypoxia attenuation and exhibited markedly enhanced persistence and effector functions inside TNBC tumors. As a result, locoregional HER1-CAR-CAT-NK cell therapy not only inhibited the growth of local primary residual tumors, but also elicited systemic antitumor activity to suppress the growth of distant tumors. This study highlights that genetic engineering of HER1-CAR-NK cells with catalase is a promising strategy to suppress the postoperative local and distant relapse of TNBC tumors.

12.
iScience ; 27(7): 110159, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39021792

RESUMO

Alcohol use disorder (AUD) is a disorder of clinical and public health significance requiring novel and improved therapeutic solutions. Both environmental and genetic factors play a significant role in its pathophysiology. However, the underlying epigenetic molecular mechanisms that link the gene-environment interaction in AUD remain largely unknown. In this proof-of-concept study, we showed, for the first time, the neuroepigenetic biomarker capability of non-invasive imaging of class I histone deacetylase (HDAC) epigenetic enzymes in the in vivo brain for classifying AUD patients from healthy controls using a machine learning approach in the context of precision diagnosis. Eleven AUD patients and 16 age- and sex-matched healthy controls completed a simultaneous positron emission tomography-magnetic resonance (PET/MR) scan with the HDAC-binding radiotracer [11C]Martinostat. Our results showed lower HDAC expression in the anterior cingulate region in AUD. Furthermore, by applying a genetic algorithm feature selection, we identified five particular brain regions whose combined [11C]Martinostat relative standard uptake value (SUVR) features could reliably classify AUD vs. controls. We validate their promising classification reliability using a support vector machine classifier. These findings inform the potential of in vivo HDAC imaging biomarkers coupled with machine learning tools in the objective diagnosis and molecular translation of AUD that could complement the current diagnostic and statistical manual of mental disorders (DSM)-based intervention to propel precision medicine forward.

13.
Quant Imaging Med Surg ; 14(7): 4749-4762, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022238

RESUMO

Background: The preoperative identification of epidermal growth factor receptor (EGFR) mutations and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively detect EGFR mutations and identify the location of EGFR mutations in patients with non-small cell lung cancer (NSCLC) and BM. Methods: We included 160 and 72 patients who underwent contrast-enhanced T1-weighted (T1w-CE) and T2-weighted (T2W) MRI at Liaoning Cancer Hospital and Institute (center 1) and Shengjing Hospital of China Medical University (center 2) to form a training cohort and an external validation cohort, respectively. A multiscale feature fusion network (MSF-Net) was developed by adaptively integrating features based on different stages of residual network (ResNet) 50 and by introducing channel and spatial attention modules. The external validation set from center 2 was used to assess the performance of MSF-Net and to compare it with that of handcrafted radiomics features. Receiver operating characteristic (ROC) curves, accuracy, precision, recall, and F1-score were used to evaluate the effectiveness of the models. Gradient-weighted class activation mapping (Grad-CAM) was used to demonstrate the attention of the MSF-Net model. Results: The developed MSF-Net generated a better diagnostic performance than did the handcrafted radiomics in terms of the microaveraged area under the curve (AUC) (MSF-Net: 0.91; radiomics: 0.80) and macroaveraged AUC (MSF-Net: 0.90; radiomics: 0.81) for predicting EGFR mutations and subtypes. Conclusions: This study provides an end-to-end and noninvasive imaging tool for the preoperative prediction of EGFR mutation status and subtypes based on BM, which may be helpful for facilitating individualized clinical treatment plans.

14.
Noncoding RNA Res ; 9(4): 1080-1097, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39022683

RESUMO

Diabetes mellitus has surged in prevalence, emerging as a prominent epidemic and assuming a foremost position among prevalent medical disorders. Diabetes constitutes a pivotal risk element for cardiovascular maladies, with diabetic cardiomyopathy (DCM) standing out as a substantial complication encountered by individuals with diabetes. Apoptosis represents a physiological phenomenon observed throughout the aging and developmental stages, giving rise to the programmed cell death, which is implicated in DCM. Non-coding RNAs assume significant functions in modulation of gene expression. Their deviant expression of ncRNAs is implicated in overseeing diverse cellular attributes such as proliferation, apoptosis, and has been postulated to play a role in the progression of DCM. Notably, ncRNAs and the process of apoptosis can mutually influence and cooperate in shaping the destiny of human cardiac tissues. Therefore, the exploration of the interplay between apoptosis and non-coding RNAs holds paramount importance in the formulation of efficacious therapeutic and preventive approaches for managing DCM. In this review, we provide a comprehensive overview of the apoptotic signaling pathways relevant to DCM and subsequently delve into the reciprocal regulation between apoptosis and ncRNAs in DCM. These insights contribute to an enhanced comprehension of DCM and the development of therapeutic strategies.

15.
PLoS Pathog ; 20(7): e1012256, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024394

RESUMO

African swine fever (ASF) is a highly contagious, fatal disease of pigs caused by African swine fever virus (ASFV). The complexity of ASFV and our limited understanding of its interactions with the host have constrained the development of ASFV vaccines and antiviral strategies. To identify host factors required for ASFV replication, we developed a genome-wide CRISPR knockout (GeCKO) screen that contains 186,510 specific single guide RNAs (sgRNAs) targeting 20,580 pig genes and used genotype II ASFV to perform the GeCKO screen in wild boar lung (WSL) cells. We found that knockout of transmembrane protein 239 (TMEM239) significantly reduced ASFV replication. Further studies showed that TMEM239 interacted with the early endosomal marker Rab5A, and that TMEM239 deletion affected the co-localization of viral capsid p72 and Rab5A shortly after viral infection. An ex vivo study showed that ASFV replication was significantly reduced in TMEM239-/- peripheral blood mononuclear cells (PBMCs) from TMEM239 knockout piglets. Our study identifies a novel host factor required for ASFV replication by facilitating ASFV entry into early endosomes and provides insights for the development of ASF-resistant breeding.

16.
Redox Biol ; 75: 103267, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39025016

RESUMO

Ferroptosis, driven by an imbalance in redox homeostasis, has recently been identified to regulate macrophage function and inflammatory responses. SENP3 is a redox-sensitive de-SUMOylation protease that plays an important role in macrophage function. However, doubt remains on whether SENP3 and SUMOylation regulate macrophage ferroptosis. For the first time, the results of our study suggest that SENP3 sensitizes macrophages to RSL3-induced ferroptosis. We showed that SENP3 promotes the ferroptosis of M2 macrophages to decrease M2 macrophage proportion in vivo. Mechanistically, we identified the ferroptosis repressor FSP1 as a substrate for SUMOylation and confirmed that SUMOylation takes place mainly at its K162 site. We found that SENP3 sensitizes macrophages to ferroptosis by interacting with and de-SUMOylating FSP1 at the K162 site. In summary, our study describes a novel type of posttranslational modification for FSP1 and advances our knowledge of the biological functions of SENP3 and SUMOylation in macrophage ferroptosis.

17.
Mod Pathol ; : 100569, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025403

RESUMO

Endocervical gastric-type adenocarcinoma (GAS) is an aggressive type of endocervical mucinous adenocarcinoma characterized as being unrelated to human papillomavirus (HPV) and resistant to chemo/radiotherapy. In this study, we investigated the histology, immunohistochemistry patterns and molecular characteristics in a large cohort of GAS (n=62). Histologically, the majority of GAS cases exhibited a distinct morphology resembling gastric glands, although two exceptional cases exhibited HPV-associated adenocarcinoma (HPVA) morphology, while retaining the characteristic histology of GAS at the invasive front. By immunohistochemistry, Claudin18.2 emerged as a highly sensitive and specific marker for GAS. Additionally, the strong expression of Claudin18.2 in GAS patients indicated the potential of anti-Claudin18.2 therapy in the treatment of GAS. Other immunohistochemistry markers, including Muc6, p16, p53, Pax8, ER and PR, may provide additional diagnostic clues for GAS. Quantitative methylation analysis revealed that the overexpression of Claudin18.2 in GAS was governed by the hypomethylation of the CLDN18.2 promoter CpG islands. To further elucidate the pathogenic mechanisms of GAS and its relationship with gastric adenocarcinoma, we performed whole exome sequencing (WES) on 11 GAS and 9 gastric adenocarcinomas. TP53, CDKN2A, STK11 and TTN emerged as the most frequently mutated genes in GAS. Mutations in these genes primarily affected cell growth, cell cycle regulation, senescence and apoptosis. Intriguingly, these top mutated genes in GAS were also commonly mutated in gastric and pancreaticobiliary adenocarcinomas. Regarding germline variants, we identified a probably pathogenic variant in SPINK1, a gene linked to hereditary pancreatic cancer syndrome, in one GAS sample. This finding suggests a potential pathogenic link between pancreatic cancers and GAS. Overall, GAS exhibits molecular characteristics that resemble those observed in gastric and pancreaticobiliary adenocarcinomas, thereby lending support to the aggressive nature of GAS compared to HPVA.

18.
Lab Chip ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39027967

RESUMO

The emergence of microfluidic devices integrated with nanostructures enables highly efficient, flexible and controllable biosensing, among which zinc oxide (ZnO) nanostructure-based fluorescence detection has been demonstrated to be a promising methodology due to its high electrical point and unique fluorescence enhancement properties. The optimization of microfluidic synthesis of ZnO nanostructures for biosensing on chip has been in demand due to its low cost and high efficiency, but still the flow-induced growth of ZnO nanostructures is not extensively studied. Here, we report a simple and versatile strategy that could manipulate the local flow field by creating periodically arranged micropillars within a straight microchannel. We have explored the effects of perfusion speed and flow direction of seed solution, localized flow variation of growth solution and growth time on the morphology of nanostructures. This provided a comprehensive understanding which governs nanostructure fabrication controlled by flow. The results demonstrated that localized flow in microfluidic devices was essential for the initiation and growth of zinc oxide crystals, enabling precise control over their properties and morphology. Furthermore, a model protein was used to demonstrate the intrinsic fluorescence enhancement of ZnO nanostructures as an example to reveal the morphology-related enhancement properties.

19.
J Org Chem ; 89(14): 10393-10402, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38953569

RESUMO

α-Quaternary amino acids have found application in many biologically relevant compounds and pharmaceuticals. Although there are many methods for the synthesis of α-quaternary amino acids, most of them are mainly realized with the aid of transition metals and complex ligands. We present herein a 2,7-Br-4CzIPN catalyzed regioselective alkylation of azlactones with redox-active esters via radical-radical couplings. Strikingly, this approach is devoid of any metal or additive and shows broad scope and superior sensitive functional group compatibility.

20.
J Org Chem ; 89(14): 10112-10126, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38959135

RESUMO

A photoredox-promoted decarboxylative C-H glycosylation for the synthesis of nonclassical heteroaryl C-glycosides is reported. This methodology is characterized by an exceedingly simple reaction system, high diastereoselectivity, and good functional group tolerance. Moreover, the operational procedure is simple, and the gram-scale reaction highlights the practical applicability of this protocol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...