Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.750
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38971976

RESUMO

OBJECTIVE: Endoscopic sinus and skull base surgery has led to significant improvements in patient outcomes, yet may have come at a cost to surgeons' musculoskeletal (MSK) health. We aimed to determine the prevalence and characteristics of work-related MSK disorders (WRMDs) in endoscopic sinus and skull base surgeons; to investigate contributing factors for WRMD in this population; and to evaluate the effectiveness of ergonomic interventions on the severity or prevalence of WRMD in this population. DATA SOURCES: Medline, Embase, CINAHL, Web of Science, and Scopus from inception to April 2, 2024. A bibliographic examination was performed for further papers. REVIEW METHODS: Inclusion criteria included original peer-reviewed papers with work-related MSK outcomes (prevalence, contributing factors, and interventions) relating to endoscopic sinus and/or skull base surgeons in any language. RESULTS: Of 25,772 unique citations, 37 studies met the inclusion criteria. The pooled lifetime, point, and 12-month prevalences of WRMD were 75.9% (95% confidence interval; I2, 67.2%-83.6%, I2 95.6%), 80.8% (77.0%-84.3%, I2 98.0%), and 82.0% (71.8%-90.3%, I2 60.96%) respectively. The neck, lumbar spine, and thoracic spine were the most commonly involved areas. One of 9 studies on contributing factors investigated discomfort as an outcome. The remainder focussed on surrogate outcomes (eg, posture, hand dysfunction). Two of the 13 intervention studies investigated pain or fatigue as an outcome. The remainder targeted posture, muscle activity, or workload. CONCLUSION: WRMDs are highly prevalent in endoscopic sinus and skull base surgeons. Further studies focusing on the direct outcomes of WRMD such as pain are needed.

2.
ACS Infect Dis ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995732

RESUMO

Invasive fungal diseases (IFDs) are becoming increasingly acknowledged as a significant concern linked to heightened rates of morbidity and mortality. Regrettably, the available antifungal therapies for managing IFDs are constrained. Emerging evidence indicates that enolase holds promise as a potential target protein for combating IFDs; however, there is currently a deficiency in antifungal medications specifically targeting enolase. This study establishes that isobavachalcone (IBC) exhibits noteworthy antifungal efficacy both in vitro and in vivo. Moreover, our study has demonstrated that IBC effectively targets Eno1 in Candida albicans (CaEno1), resulting in the suppression of the glycolytic pathway. Additionally, our research has indicated that IBC exhibits a higher affinity for CaEno1 compared to human Eno1 (hEno1), with the presence of isoprenoid in the side chain of IBC playing a crucial role in its ability to inhibit enolase activity. These findings contribute to the comprehension of antifungal approaches that target Eno1, identifying IBC as a potential inhibitor of Eno1 in human pathogenic fungi.

3.
Food Chem Toxicol ; : 114875, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033872

RESUMO

Our previous study identified that nuclear factor-erythroid-2 p45-related factor 2 (NRF2) was activated in arsenite-induced tumorigenesis. However, the underlying mechanisms of NRF2 mediating apoptosis in arsenic-induced skin carcinogenesis remain unknown. This study explored the dynamic changes in apoptosis rate and the expression of apoptosis proteins in immortalized human keratinocytes (HaCaT) malignant transformation caused by 1.0 µM NaAsO2 at passages 0, 1, 7, 14, 21, 28, and 35. The result showed that the apoptosis rate decreased. The apoptosis-related proteins cleaved-caspase-3/caspase-3 ratio decreased in the later stages (passages 21, 28, and 35). Moreover, the expression of intrinsic ER stress pathway-related CHOP, ATF4, ATF6, and the intrinsic mitochondrial pathway-related Bax protein decreased in the later stages, while Bcl-2 and Mcl-1 increased, and NRF2 protein levels also increased. The apoptosis rate increased by silencing NRF2 expression in arsenite-transformed HaCaT (T-HaCaT) cells. Meanwhile, the expression of pro-apoptotic proteins (cleaved-caspase-3/caspase-3, CHOP, Bax) and ATF4, ATF6 increased. On the contrary, antiapoptotic protein levels (Bcl-2 and Mcl-1) decreased. The ability of colony formation and migration of T-HaCaT cells decreased. In conclusion, arsenite activated NRF2 in the later stages, decreasing apoptosis characterized by inhibiting endoplasmic reticulum stress-depended and mitochondria-depended apoptosis pathway, and further promoting NaAsO2-induced HaCaT cellular malignant transformation.

4.
Adv Sci (Weinh) ; : e2406473, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995235

RESUMO

Candidiasis, which presents a substantial risk to human well-being, is frequently treated with azoles. However, drug-drug interactions caused by azoles inhibiting the human CYP3A4 enzyme, together with increasing resistance of Candida species to azoles, represent serious issues with this class of drug, making it imperative to develop innovative antifungal drugs to tackle this growing clinical challenge. A drug repurposing approach is used to examine a library of Food and Drug Administration (FDA)-approved drugs, ultimately identifying otilonium bromide (OTB) as an exceptionally encouraging antifungal agent. Mechanistically, OTB impairs vesicle-mediated trafficking by targeting Sec31, thereby impeding the plasma membrane (PM) localization of the ergosterol transporters, such as Sip3. Consequently, OTB obstructs the movement of ergosterol across membranes and triggers cytotoxic autophagy. It is noteworthy that C. albicans encounters challenges in developing resistance to OTB because it is not a substrate for drug transporters. This study opens a new door for antifungal therapy, wherein OTB disrupts ergosterol subcellular distribution and induces cytotoxic autophagy. Additionally, it circumvents the hepatotoxicity associated with azole-mediated liver enzyme inhibition and avoids export-mediated drug resistance in C. albicans.

5.
World J Clin Oncol ; 15(6): 765-782, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38946828

RESUMO

BACKGROUND: Lung cancer bone metastasis (LCBM) is a disease with a poor prognosis, high risk and large patient population. Although considerable scientific output has accumulated on LCBM, problems have emerged, such as confusing research structures. AIM: To organize the research frontiers and body of knowledge of the studies on LCBM from the last 22 years according to their basic research and translation, clinical treatment, and clinical diagnosis to provide a reference for the development of new LCBM clinical and basic research. METHODS: We used tools, including R, VOSviewer and CiteSpace software, to measure and visualize the keywords and other metrics of 1903 articles from the Web of Science Core Collection. We also performed enrichment and protein-protein interaction analyses of gene expression datasets from LCBM cases worldwide. RESULTS: Research on LCBM has received extensive attention from scholars worldwide over the last 20 years. Targeted therapies and immunotherapies have evolved into the mainstream basic and clinical research directions. The basic aspects of drug resistance mechanisms and parathyroid hormone-related protein may provide new ideas for mechanistic study and improvements in LCBM prognosis. The produced molecular map showed that ribosomes and focal adhesion are possible pathways that promote LCBM occurrence. CONCLUSION: Novel therapies for LCBM face animal testing and drug resistance issues. Future focus should centre on advancing clinical therapies and researching drug resistance mechanisms and ribosome-related pathways.

6.
J Vis Exp ; (208)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39007606

RESUMO

Malnutrition is a common issue in critically ill patients, often stemming from illness, injury, or surgery. Prolonged fasting leads to intestinal issues, emphasizing the importance of early enteral nutrition, specifically through jejunal nutrition. While enteral nutrition is crucial, complications with current techniques exist. Nasojejunal (NJ) tubes are commonly used, with placement methods categorized as surgical or non-surgical. Non-surgical methods, including endoscopic guidance, have varying success rates, with endoscopic-assisted placement being the most successful but requiring specialized expertise and logistics. This study introduces a bedside, visualized method for NJ tube placement to enhance success rates and reduce patient discomfort in the intensive care unit (ICU). In this study involving 19 ICU patients, the method achieved an initial success rate of 94.74% with an average insertion time of 11.2 ± 6.4 min. This visualized method demonstrates efficiency and reduces the need for additional imaging, and the introduction of a miniaturized endoscope shows promise, enabling successful intubation at the bedside and minimizing patient discomfort. Adjustments to the guidewire lens and catheter are necessary but pose opportunities for future refinements.


Assuntos
Intubação Gastrointestinal , Humanos , Intubação Gastrointestinal/métodos , Intubação Gastrointestinal/instrumentação , Jejuno/cirurgia , Nutrição Enteral/métodos , Nutrição Enteral/instrumentação
7.
ChemistryOpen ; : e202400061, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884376

RESUMO

RATIONALE: Quinolone antibiotics are extensively used clinically for human treatment and in agriculture. However, improper and excessive use can lead to the persistence of quinolone residues in animal tissues, potentially accumulating in the human body and posing health risks. Investigating the correlation between mass spectrometry cleavage patterns and molecular structural features enhances the analytical framework for detecting trace or unknown impurities in quinolones. METHODS: To collect data, we employed triple quadrupole linear ion trap mass spectrometry in electrospray positive ion mode. Primary mass spectrometry scanning was utilized to confirm parent ions, while secondary mass spectrometry scanning enabled the observation of fragment ions. The cleavage characteristics and pathways of the compounds were inferred from accurate mass-to-charge ratios obtained from both primary and secondary mass spectrometry. RESULTS: Under soft ionization conditions, the compounds generally exhibited characteristic fragment ions of [M+H-H2O]+, [M+H-CO]+, and [M+H-H2O-CO]+. Additionally, subtle variations were observed in each compound due to differences in modifying groups. For instance, upon deacidification, the piperazine ring structure underwent breakage and rearrangement, yielding fragment ion peaks devoid of neutral molecules such as C2H5N, C3H7N, or C4H8N. Notably, compounds featuring a cyclopropyl substituent group at the N-1 position typically exhibited characteristic fragments resulting from the loss of the cyclopropyl radical (⋅C3H5). Moreover, substituents at the N-1 and C-8 positions, when linked to form a six-membered carbocyclic ring, were prone to cleavage, releasing the neutral C3H6 molecule. CONCLUSION: Quinolone antibiotics share structural similarities in their parent nuclei, leading to partially similar cleavage pathways. Nevertheless, distinct cleavage patterns emerge due to variations in functional groups. According to the difference of mass spectrometry cleavage patterns, it can provide an identification basis for the measured detection of antibiotics.

8.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893573

RESUMO

Graphene oxide (GO) has attracted huge attention in biomedical sciences due to its outstanding properties and potential applications. In this study, we synthesized GO using our recently developed 1-pyrenebutyric acid-assisted method and assessed how the GO as a filler influences the mechanical properties of GO-gelatine nanocomposite dry films as well as the cytotoxicity of HEK-293 cells grown on the GO-gelatine substrates. We show that the addition of GO (0-2%) improves the mechanical properties of gelatine in a concentration-dependent manner. The presence of 2 wt% GO increased the tensile strength, elasticity, ductility, and toughness of the gelatine films by about 3.1-, 2.5-, 2-, and 8-fold, respectively. Cell viability, apoptosis, and necrosis analyses showed no cytotoxicity from GO. Furthermore, we performed circular dichroism, X-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses to decipher the interactions between GO and gelatine. The results show, for the first time, that GO enhances the mechanical properties of gelatine by forming non-covalent intermolecular interactions with gelatine at its amorphous or disordered regions. We believe that our findings will provide new insight and help pave the way for potential and wide applications of GO in tissue engineering and regenerative biomedicine.


Assuntos
Gelatina , Grafite , Grafite/química , Gelatina/química , Humanos , Células HEK293 , Resistência à Tração , Sobrevivência Celular/efeitos dos fármacos , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Nanocompostos/química
9.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853906

RESUMO

Emotion regulation, essential for adaptive behavior, depends on the brain's capacity to process a range of emotions. Current research has largely focused on individual emotional circuits without fully exploring how their interaction influences physiological responses or understanding the neural mechanisms that differentiate emotional valence. Using in vivo calcium imaging, electrophysiology, and optogenetics, we examined neural circuit dynamics in the medial prefrontal cortex (mPFC), targeting two key areas: the basal lateral amygdala (BLA) and nucleus accumbens (NAc). Our results demonstrate distinct activation patterns in the mPFC→BLA and mPFC→NAc pathways in response to social stimuli, indicating a mechanism for discriminating emotions: increased mPFC→BLA activity signals anxiety, while heightened mPFC→NAc responses are linked to exploration. Additionally, chronic emotional states amplify activity in these pathways-positivity enhances mPFC→NAc, while negativity boosts mPFC→BLA. This study sheds light on the nuanced neural circuitry involved in emotion regulation, revealing the pivotal roles of mPFC projections in emotional processing. Identifying these specific circuits engaged by varied emotional states advances our understanding of emotional regulation's biological underpinnings and highlights potential targets for addressing emotional dysregulation in psychiatric conditions. Significance statement: While existing circuitry studies have underscored the significance of emotional circuits, the majority of research has concentrated on individual circuits. The assessment of whether and how the balance among multiple circuits influences overall physiological outcomes is often overlooked. This study delves into the neural underpinnings of emotion regulation, focusing on how positive and negative valences are discriminated and managed. By examining the specific pathways from the medial prefrontal cortex (mPFC) to key emotional centers-the basal lateral amygdala (BLA) for negative valence and the nucleus accumbens (NAc) for positive one-we uncovered a novel dual-balanced neural circuit mechanism that enables this essential aspect of human cognition.

10.
Front Endocrinol (Lausanne) ; 15: 1373774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863929

RESUMO

Background: Asthenozoospermia, a type of male infertility, is primarily caused by dysfunctional sperm mitochondria. Despite previous bioinformatics analysis identifying potential key lncRNAs, miRNAs, hub genes, and pathways associated with asthenospermia, there is still a need to explore additional molecular mechanisms and potential biomarkers for this condition. Methods: We integrated data from Gene Expression Omnibus (GEO) (GSE22331, GSE34514, and GSE160749) and performed bioinformatics analysis to identify differentially expressed genes (DEGs) between normozoospermia and asthenozoospermia. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to gain insights into biological processes and signaling pathways. Weighted Gene Co-expression Network Analysis (WGCNA) identified gene modules associated with asthenozoospermia. Expression levels of key genes were assessed using datasets and experimental data. Gene Set Enrichment Analysis (GSEA) and correlation analysis identified pathways associated with the hub gene and explore the relationship between the ZNF764 and COQ9 and mitochondrial autophagy-related genes. Competitive endogenous RNA (ceRNA) networks were constructed, and in vitro experiments using exosome samples were conducted to validate this finding. Results: COQ9 was identified as a marker gene in asthenozoospermia, involved in autophagy, ATP-dependent chromatin remodeling, endocytosis, and cell cycle, etc. The ceRNA regulatory network (LINC00893/miR-125a-5p/COQ9) was constructed, and PCR demonstrated that LINC00893 and COQ9 were downregulated in asthenozoospermia, while miR-125a-5p and m6A methylation level of LINC00893 were upregulated in asthenozoospermia compared to normozoospermic individuals. Conclusion: The ceRNA regulatory network (LINC00893/miR-125a-5p/COQ9) likely plays a crucial role in the mechanism of asthenozoospermia. However, further functional experiments are needed to fully understand its significance.


Assuntos
Astenozoospermia , Biomarcadores , Biologia Computacional , Redes Reguladoras de Genes , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/metabolismo , Biologia Computacional/métodos , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Ontologia Genética , Transdução de Sinais/genética , Espermatozoides/metabolismo
11.
Viruses ; 16(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932262

RESUMO

Hepatitis A virus (HAV), a member of the genus Hepatovirus (Picornaviridae HepV), remains a significant viral pathogen, frequently causing enterically transmitted hepatitis worldwide. In this study, we conducted an epidemiological survey of HepVs carried by small terrestrial mammals in the wild in Yunnan Province, China. Utilizing HepV-specific broad-spectrum RT-PCR, next-generation sequencing (NGS), and QNome nanopore sequencing (QNS) techniques, we identified and characterized two novel HepVs provisionally named EpMa-HAV and EpLe-HAV, discovered in the long-tailed mountain shrew (Episoriculus macrurus) and long-tailed brown-toothed shrew (Episoriculus leucops), respectively. Our sequence and phylogenetic analyses of EpMa-HAV and EpLe-HAV indicated that they belong to the species Hepatovirus I (HepV-I) clade II, also known as the Chinese shrew HepV clade. Notably, the codon usage bias pattern of novel shrew HepVs is consistent with that of previously identified Chinese shrew HepV. Furthermore, our structural analysis demonstrated that shrew HepVs differ from other mammalian HepVs in RNA secondary structure and exhibit variances in key protein sites. Overall, the discovery of two novel HepVs in shrews expands the host range of HepV and underscores the existence of genetically diverse animal homologs of human HAV within the genus HepV.


Assuntos
Genoma Viral , Filogenia , Musaranhos , Animais , Musaranhos/virologia , China/epidemiologia , RNA Viral/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/epidemiologia
12.
Chem Sci ; 15(25): 9814-9822, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38939142

RESUMO

Bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) is commonly used as an effective dopant to improve the performance of the hole-transporting material (HTM) in n-i-p perovskite solar cells (PSCs). However, the ultra-hygroscopic and migratory nature of Li-TFSI leads to inferior stability of PSCs. Here, we report on a strategy to regulate the anion unit in Li-TFSI from linear to cyclic, constructing a new dopant, lithium 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (Li-CYCLIC), for the state-of-the-art poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). Mechanistic and experimental results reveal that the cyclic anion CYCLIC- exhibits stronger interaction with Li+ and PTAA˙+ compared with the linear anion TFSI-, thus significantly restraining the moisture absorption and migration of Li+ and improving the thermodynamic stability of PTAA˙+CYCLIC-. With this molecular engineering, the resulting PSCs based on Li-CYCLIC obtained an improved efficiency, along with remarkably enhanced stability, retaining 96% of the initial efficiency after over 1150 hours under continuous 1 sun illumination in an N2 atmosphere, yielding an extrapolated T 80 of over 12 000 hours. In a broader context, the proposed strategy of linear-to-cyclic doping provides substantial guidance for the subsequent advancement in the development of effective dopants for photoelectric devices.

13.
Antioxidants (Basel) ; 13(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38929106

RESUMO

Fluconazole (FLC) is extensively employed for the prophylaxis and treatment of invasive fungal infections (IFIs). However, the fungistatic nature of FLC renders pathogenic fungi capable of developing tolerance towards it. Consequently, converting FLC into a fungicidal agent using adjuvants assumes significance to circumvent FLC resistance and the perpetuation of fungal infections. This drug repurposing study has successfully identified pitavastatin calcium (PIT) as a promising adjuvant for enhancing the fungicidal activity of FLC from a comprehensive library of 2372 FDA-approved drugs. PIT could render FLC fungicidal even at concentrations as low as 1 µM. The median lethal dose (LD50) of PIT was determined to be 103.6 mg/kg. We have discovered that PIT achieves its synergistic effect by inhibiting the activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby impeding ubiquinone biosynthesis, inducing reactive oxygen species (ROS) generation, triggering apoptosis, and disrupting Golgi function. We employed a Candida albicans strain that demonstrated a notable tolerance to FLC to infect mice and found that PIT effectively augmented the antifungal efficacy of FLC against IFIs. This study is an illustrative example of how FDA-approved drugs can effectively eliminate fungal tolerance to FLC.

14.
Water Res ; 261: 122000, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38944003

RESUMO

Anaerobic digestion (AD) is a key technology for converting organic matters to methane-rich biogas. However, nutrient imbalance can destabilize the whole digestion. To realize stable operation of AD and improve its efficiency, this work considers a new strategy to control the intermediate concentrations of poor AD under nutrient stress. For this purpose, long-term digestion under different nutrient conditions was investigated. Results showed that the feedstock with a low C/N ratio (= 6) caused VFA accumulation (2072 ± 632 mg/L), leading to the inhibition of methane production. Employing a substrate with a higher C/N ratio (= 11) and/or adding NH4HCO3 (200 mg NH4+-N/Ladd) could alleviate the VFA inhibition, but excessive dosage of NH4HCO3 would induce ammonia inhibition. Through the established digestion balance between free ammonia nitrogen (FAN) between 0 and 25 mg/L, volatile fatty acid (VFA) 510-2100 mg/L, and alkalinity (ALK) 3300-7800 mg/L, an efficient methane yield of 150-250 mL/g VS was achieved and stable operation of AD under nutrient stress (low C/N ratio) was realized. Metabolic reconstruction between Euryarchaeota sp. MAG162, Methanosarcina mazei MAG53 and Mesotoga infera MAG119 highlighted that microbial niche balance was developed as a result of digestion balance, which is beneficial for stable operation of AD. These findings improved our understanding of the interaction mechanism between intermediates and microbial niches for stability control in AD.

15.
BMC Med Res Methodol ; 24(1): 141, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943087

RESUMO

BACKGROUND: On-site monitoring is a crucial component of quality control in clinical trials. However, many cast doubt on its cost-effectiveness due to various issues, such as a lack of monitoring focus that could assist in prioritizing limited resources during a site visit. Consequently, an increasing number of trial sponsors are implementing a hybrid monitoring strategy that combines on-site monitoring with centralised monitoring. One of the primary objectives of centralised monitoring, as stated in the clinical trial guidelines, is to guide and adjust the extent and frequency of on-site monitoring. Quality tolerance limits (QTLs) introduced in ICH E6(R2) and thresholds proposed by TransCelerate Biopharma are two existing approaches for achieving this objective at the trial- and site-levels, respectively. The funnel plot, as another threshold-based site-level method, overcomes the limitation of TransCelerate's method by adjusting thresholds flexibly based on site sizes. Nonetheless, both methods do not transparently explain the reason for choosing the thresholds that they used or whether their choices are optimal in any certain sense. Additionally, related Bayesian monitoring methods are also lacking. METHODS: We propose a simple, transparent, and user-friendly Bayesian-based risk boundary for determining the extent and frequency of on-site monitoring both at the trial- and site-levels. We developed a four-step approach, including: 1) establishing risk levels for key risk indicators (KRIs) along with their corresponding monitoring actions and estimates; 2) calculating the optimal risk boundaries; 3) comparing the outcomes of KRIs against the optimal risk boundaries; and 4) providing recommendations based on the comparison results. Our method can be used to identify the optimal risk boundaries within an established risk level range and is applicable to continuous, discrete, and time-to-event endpoints. RESULTS: We evaluate the performance of the proposed risk boundaries via simulations that mimic various realistic clinical trial scenarios. The performance of the proposed risk boundaries is compared against the funnel plot using real clinical trial data. The results demonstrate the applicability and flexibility of the proposed method for clinical trial monitoring. Moreover, we identify key factors that affect the optimality and performance of the proposed risk boundaries, respectively. CONCLUSION: Given the aforementioned advantages of the proposed risk boundaries, we expect that they will benefit the clinical trial community at large, in particular in the realm of risk-based monitoring.


Assuntos
Teorema de Bayes , Humanos , Ensaios Clínicos como Assunto/métodos , Controle de Qualidade , Algoritmos
16.
Am J Transl Res ; 16(5): 1798-1805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883379

RESUMO

OBJECTIVE: This study investigates the clinical efficacy of integrating digital design with three-dimension (3D) printing technology in the transplantation of flaps for fingertip defects. METHODS: A retrospective analysis was conducted from October 2019 to June 2021 on 90 cases of patients with fingertip defects. These included 45 cases in which digital design, coupled with 3D printing, assisted the operation (3D printing group), and another 45 cases where patients underwent traditional pedicle flap transplantation and skin grafting (traditional operation group). A six-month postoperative follow-up assessed various measurements between the two groups, comparing the skin flap survival rate, aesthetic outcome, cold intolerance, sensory recovery, and overall skin flap performance. RESULTS: ① Statistical analysis utilizing the independent samples t-test revealed a significant reduction in both operation time and flap anastomosis rate for the 3D printing group compared to the traditional operation group (P < 0.05). ② Conversely, the survival rate, aesthetic outcome, and cold intolerance showed no significant disparities between the groups (P > 0.05). ③ Further, the Mann-Whitney U test indicated no significant difference in sensory recovery and overall efficacy assessment between the two cohorts (P > 0.05). CONCLUSION: Integrating digital design with 3D printing technology facilitated the surgical management of fingertip defects, achieving customized and precise approaches in flap transplantation. This precision in personalized skin flap design contributed to reduced operative time and enhanced surgical efficiency in such procedures.

17.
Zool Res ; 45(4): 821-830, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894524

RESUMO

Magnetic sense, or termed magnetoreception, has evolved in a broad range of taxa within the animal kingdom to facilitate orientation and navigation. MagRs, highly conserved A-type iron-sulfur proteins, are widely distributed across all phyla and play essential roles in both magnetoreception and iron-sulfur cluster biogenesis. However, the evolutionary origins and functional diversification of MagRs from their prokaryotic ancestor remain unclear. In this study, MagR sequences from 131 species, ranging from bacteria to humans, were selected for analysis, with 23 representative sequences covering species from prokaryotes to Mollusca, Arthropoda, Osteichthyes, Reptilia, Aves, and mammals chosen for protein expression and purification. Biochemical studies revealed a gradual increase in total iron content in MagRs during evolution. Three types of MagRs were identified, each with distinct iron and/or iron-sulfur cluster binding capacity and protein stability, indicating continuous expansion of the functional roles of MagRs during speciation and evolution. This evolutionary biochemical study provides valuable insights into how evolution shapes the physical and chemical properties of biological molecules such as MagRs and how these properties influence the evolutionary trajectories of MagRs.


Assuntos
Proteínas Ferro-Enxofre , Animais , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Evolução Biológica , Evolução Molecular , Filogenia , Ferro/metabolismo
18.
Biochem Soc Trans ; 52(3): 1539-1548, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864432

RESUMO

Mitochondria are essential organelles of eukaryotic cells and thus mitochondrial proteome is under constant quality control and remodelling. Yme1 is a multi-functional protein and subunit of the homo-hexametric complex i-AAA proteinase. Yme1 plays vital roles in the regulation of mitochondrial protein homeostasis and mitochondrial plasticity, ranging from substrate degradation to the regulation of protein functions involved in mitochondrial protein biosynthesis, energy production, mitochondrial dynamics, and lipid biosynthesis and signalling. In this mini review, we focus on discussing the current understanding of the roles of Yme1 in mitochondrial protein import via TIM22 and TIM23 pathways, oxidative phosphorylation complex function, as well as mitochondrial lipid biosynthesis and signalling, as well as a brief discussion of the role of Yme1 in modulating mitochondrial dynamics.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Proteínas Mitocondriais , Fosforilação Oxidativa , Transporte Proteico , Proteostase , Humanos , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Animais , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Lipídeos/biossíntese , Lipídeos/química , Metabolismo dos Lipídeos , Homeostase , Transdução de Sinais , Proteases Dependentes de ATP/metabolismo
19.
Front Vet Sci ; 11: 1430113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872801

RESUMO

N-glycosylation is a highly conserved glycan modification that plays crucial roles in various physiological processes, including protein folding, trafficking, and signal transduction. Porcine deltacoronavirus (PDCoV) poses a newly emerging threat to the global porcine industry. The spike protein of PDCoV exhibits a high level of N-glycosylation; however, its role in viral infection remains poorly understood. In this study, we applied a lentivirus-based entry reporter system to investigate the role of N-glycosylation on the viral spike protein during PDCoV entry stage. Our findings demonstrate that N-glycosylation at positions 652 and 661 of the viral spike protein significantly reduces the infectivity of PDCoV pseudotyped virus. Overall, our results unveil a novel function of N-glycosylation in PDCoV infection, highlighting its potential for facilitating the development of antiviral strategies.

20.
BMC Complement Med Ther ; 24(1): 227, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862934

RESUMO

OBJECTIVE: Endometrial cancer (EC) is an oestrogen-dependent tumour, the occurrence of which is closely related to an imbalance of oestrogen homeostasis. Our previous studies explored the effects of Resveratrol(Res) on oestrogen metabolism. However, systematic research on the exact mechanism of action of Res is still lacking. Based on network pharmacology, molecular docking and animal experiments, the effects and molecular mechanisms of Res on endometrial cancer were investigated. METHODS: The target of Res was obtained from the high-throughput experiment and reference-guided database of TCM (HERB) and the Encyclopedia of Traditional Chinese Medicine (ETCM) databases, and the target of endometrial cancer was obtained by using the Genecards database. Venny map was used to obtain the intersection target of Res in the treatment of endometrial cancer, and the protein interaction network of the intersection target was constructed by importing the data into the STRING database. Then, the drug-disease-target interaction network was constructed based on Cytoscape 3.9.1 software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for intersection targets using the OmicShare cloud platform. Res and core targets were analysed by molecular docking. EC model mice induced by MNNG were randomly divided into the control group, Res group, MNNG group, MNNG + Res group, and MNNG + Res + MAPK/ERKi group. The protein levels of ERK and p-ERK in the mouse uterus were detected by Western blot. The levels of E1, E2, E3, 16-epiE3, 17-epiE3, 2-MeOE1, 4-MeOE1, 2-MeOE2, 4-MeOE2, 3-MeOE1, 2-OHE1, 4-OHE1, 2-OHE2, 4-OHE2, and 16α-OHE1 in the serum and endometrial tissue of mice were measured by LC‒MS/MS. RESULTS: A total of 174 intersection targets of Res anti-endometrial cancer were obtained. The signalling pathways analysed by KEGG enrichment included the AGE-RAGE signalling pathway in diabetic complications, the PI3K-Akt signalling pathway and the MAPK signalling pathway. The top 10 core targets were MAPK3, JUN, TP53, CASP3, TNF, IL1B, AKT1, FOS, VEGFA and INS. Molecular docking showed that in addition to TNF, other targets had good affinity for Res, and the binding activity with MAPK3 was stable. Western blot results showed that Res increased the phosphorylation level of ERK and that MAPK/ERKi decreased ERK activation. In the LC-MS/MS analysis, the levels of 2-MeOE1, 2-MeOE2 and 4-MeOE1 in serum and uterine tissue showed a significantly decreasing trend in the MNNG group, while that of 4-OHE2 was increased (P < 0.05). The concentrations of 4-MeOE1 in serum and 2-MeOE1 and 2-MeOE2 in the endometrial tissue of mice were significantly increased after Res treatment, and those of 4-OHE2 in the serum and uterus of mice were significantly decreased (P < 0.05). Meanwhile, in the MAPK/ERKi intervention group, the effect of Res on the reversal of oestrogen homeostasis imbalance was obviously weakened. CONCLUSION: Res has multiple targets and multiple approaches in the treatment of endometrial cancer. In this study, it was found that Res regulates oestrogen metabolism by activating the MAPK/ERK pathway. This finding provides a new perspective for subsequent research on the treatment of endometrial cancer.


Assuntos
Neoplasias do Endométrio , Estrogênios , Sistema de Sinalização das MAP Quinases , Simulação de Acoplamento Molecular , Resveratrol , Feminino , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo , Animais , Resveratrol/farmacologia , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estrogênios/metabolismo , Estrogênios/farmacologia , Humanos , Camundongos Endogâmicos BALB C , Farmacologia em Rede , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...