Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 540: 101-107, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33460839

RESUMO

Pyrrolidone carboxypeptidases (Pcps) (E.C. 3.4.19.3) can cleave the peptide bond adjacent to pyro-glutamic acid (pGlu), an N-terminal modification observed in some proteins that provides protection against common proteases. Pcp derived from extremely thermophilic Fervidobacterium islandicum AW-1 (FiPcp), that belongs to the cysteine protease family, is involved in keratin utilization under stress conditions. Although an irreversible oxidative modification of active cysteine to its sulfonic acid derivative (Cys-SO3H) renders the enzyme inactive, the molecular details for the sulfonic acid modification in inactive Pcp remain unclear. Here, we determined the crystal structure of FiPcp at 1.85 Å, revealing the oxidized form of cysteine sulfonic acid (C156-SO3H) in the catalytic triad (His-Cys-Glu), which participates in the hydrolysis of pGlu residue containing peptide bond. The three oxygen atoms of cysteine sulfonic acid were stabilized by hydrogen bonds with H180, carbonyl backbone of Q83, and water molecules, resulting in inactivation of FiPcp. Furthermore, FiPcp demonstrated a unique 139KKKK142 motif involved in inter-subunit electrostatic interactions whose mutation significantly affects the thermostability of tetrameric FiPcp. Thus, our high-resolution structure of the first inactive FiPcp with irreversible oxidative modification of active cysteine provides not only the molecular basis of the redox-dependent catalysis of Pcp, but also the structural features of its thermostability.


Assuntos
Bactérias/enzimologia , Carboxipeptidases/química , Carboxipeptidases/metabolismo , Queratinas/metabolismo , Pirrolidinonas/metabolismo , Motivos de Aminoácidos , Bactérias/classificação , Domínio Catalítico , Cristalografia por Raios X , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Estabilidade Enzimática , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Eletricidade Estática , Água/metabolismo
2.
Microb Biotechnol ; 14(3): 938-952, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33320434

RESUMO

Most extremophilic anaerobes possess a sulfur formation (Suf) system for Fe-S cluster biogenesis. In addition to its essential role in redox chemistry and stress responses of Fe-S cluster proteins, the Suf system may play an important role in keratin degradation by Fervidobacterium islandicum AW-1. Comparative genomics of the order Thermotogales revealed that the feather-degrading F. islandicum AW-1 has a complete Suf-like machinery (SufCBDSU) that is highly expressed in cells grown on native feathers in the absence of elemental sulfur (S0 ). On the other hand, F. islandicum AW-1 exhibited a significant retardation in the Suf system-mediated keratin degradation in the presence of S0 . Detailed differential expression analysis of sulfur assimilation machineries unveiled the mechanism by which an efficient sulfur delivery from persulfurated SufS to SufU is achieved during keratinolysis under sulfur starvation. Indeed, addition of SufS-SufU to cell extracts containing keratinolytic proteases accelerated keratin decomposition in vitro under reducing conditions. Remarkably, mass spectrometric analysis of extracellular and intracellular levels of amino acids suggested that redox homeostasis within cells coupled to extracellular cysteine and cystine recycling might be a prerequisite for keratinolysis. Taken together, these results suggest that the Suf-like machinery including the SufS-SufU complex may contribute to sulfur availability for an extracellular reducing environment as well as intracellular redox homeostasis through cysteine released from keratin hydrolysate under starvation conditions.


Assuntos
Cisteína , Queratinas , Animais , Bactérias , Cistina , Enxofre
3.
Nat Commun ; 11(1): 4212, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839469

RESUMO

Phosphatases, together with kinases and transcription factors, are key components in cellular signalling networks. Here, we present a systematic functional analysis of the phosphatases in Cryptococcus neoformans, a fungal pathogen that causes life-threatening fungal meningoencephalitis. We analyse 230 signature-tagged mutant strains for 114 putative phosphatases under 30 distinct in vitro growth conditions, revealing at least one function for 60 of these proteins. Large-scale virulence and infectivity assays using insect and mouse models indicate roles in pathogenicity for 31 phosphatases involved in various processes such as thermotolerance, melanin and capsule production, stress responses, O-mannosylation, or retromer function. Notably, phosphatases Xpp1, Ssu72, Siw14, and Sit4 promote blood-brain barrier adhesion and crossing by C. neoformans. Together with our previous systematic studies of transcription factors and kinases, our results provide comprehensive insight into the pathobiological signalling circuitry of C. neoformans.


Assuntos
Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Genoma Fúngico/genética , Estudo de Associação Genômica Ampla/métodos , Monoéster Fosfórico Hidrolases/genética , Animais , Análise por Conglomerados , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Feminino , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Camundongos Endogâmicos , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases/classificação , Fosfotransferases/genética , Fosfotransferases/metabolismo , Transdução de Sinais/genética , Termotolerância/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
4.
Front Mol Biosci ; 7: 600634, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392259

RESUMO

The NA23_RS08100 gene of Fervidobacterium islandicum AW-1 encodes a keratin-degrading ß-aspartyl peptidase (FiBAP) that is highly expressed under starvation conditions. Herein, we expressed the gene in Escherichia coli, purified the recombinant enzyme to homogeneity, and investigated its function. The 318 kDa recombinant FiBAP enzyme exhibited maximal activity at 80°C and pH 7.0 in the presence of Zn2+. Size-exclusion chromatography revealed that the native enzyme is an octamer comprising a tetramer of dimers; this was further supported by determination of its crystal structure at 2.6 Å resolution. Consistently, the structure of FiBAP revealed three additional salt bridges in each dimer, involving 12 ionic interactions that might contribute to its high thermostability. In addition, the co-crystal structure containing the substrate analog N-carbobenzoxy-ß-Asp-Leu at 2.7 Å resolution revealed binuclear Zn2+-mediated substrate binding, suggesting that FiBAP is a hyperthermophilic type-I IadA, in accordance with sequence-based phylogenetic analysis. Indeed, complementation of a Leu auxotrophic E. coli mutant strain (ΔiadA and ΔleuB) with FiBAP enabled the mutant strain to grow on isoAsp-Leu peptides. Remarkably, LC-MS/MS analysis of soluble keratin hydrolysates revealed that FiBAP not only cleaves the C-terminus of isoAsp residues but also has a relatively broad substrate specificity toward α-peptide bonds. Moreover, heat shock-induced protein aggregates retarded bacterial growth, but expression of BAP alleviated the growth defect by degrading damaged proteins. Taken together, these results suggest that the viability of hyperthermophiles under stressful conditions may rely on the activity of BAP within cellular protein repair systems.

5.
Microb Biotechnol ; 13(2): 442-457, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31613061

RESUMO

Keratin degradation is of great interest for converting agro-industrial waste into bioactive peptides and is directly relevant for understanding the pathogenesis of superficial infections caused by dermatophytes. However, the mechanism of this process remains unclear. Here, we obtained the complete genome sequence of a feather-degrading, extremely thermophilic bacterium, Fervidobacterium islandicum AW-1 and performed bioinformatics-based functional annotation. Reverse transcription PCR revealed that 57 putative protease-encoding genes were differentially expressed in substrate-dependent manners. Consequently, 16 candidate genes were highly expressed under starvation conditions, when keratin degradation begun. Subsequently, the dynamic expression profiles of these 16 selected genes in response to feathers, as determined via quantitative real-time PCR, suggested that they included four metalloproteases and two peptidases including an ATP-dependent serine protease, all of which might act as key players in feather decomposition. Furthermore, in vitro keratinolytic assays supported the notion that recombinant enzymes enhanced the decomposition of feathers in the presence of cell extracts. Therefore, our genome-based systematic and dynamic expression profiling demonstrated that these identified metalloproteases together with two additional peptidases might be primarily associated with the decomposition of native feathers, suggesting that keratin degradation can be achieved via non-canonical catalysis of several membrane-associated metalloproteases in cooperation with cytosolic proteases.


Assuntos
Plumas , Peptídeo Hidrolases , Animais , Bactérias , Perfilação da Expressão Gênica , Peptídeo Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...