Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(43): 6437-6452, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37132651

RESUMO

Water plays an essential role in the development of society. However, the worldwide supply of drinking water is becoming a challenge that needs to be addressed in the future. In this review we focus on new electrochemical technologies based on the concept of desalination batteries (DBs) and which feature different desalination approaches based on battery-like technologies reported to date. Here, we use the state-of-the-art knowledge and the current developments in materials and electrochemical engineering to promote an innovative approach in the search of strategies for increasing ion removal from salty electrolytes and energy storage capability. The motivation behind the present review is to reinforce the knowledge of each group of DB-based methods focusing on their figures of merit (FOM). Accordingly, it aims to address DBs as a promising technology to face water remediation at low energy consumption using the following key-aspects: (1) DB basis/concept, history and comparison to other electrochemical-based technologies; (2) DB-based concepts proposed in the literature, focusing on providing their FOM as the core of this review; (3) limitations and future challenges and opportunities. Moreover, discussions regarding charging-discharging mechanisms, cell designs and current issues on operational modes are also provided.

2.
Adv Sci (Weinh) ; 9(27): e2201380, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35896956

RESUMO

The ever-increasing amount of batteries used in today's society has led to an increase in the demand of lithium in the last few decades. While mining resources of this element have been steadily exploited and are rapidly depleting, water resources constitute an interesting reservoir just out of reach of current technologies. Several techniques are being explored and novel materials engineered. While evaporation is very time-consuming and has large footprints, ion sieves and supramolecular systems can be suitably tailored and even integrated into membrane and electrochemical techniques. This review gives a comprehensive overview of the available solutions to recover lithium from water resources both by passive and electrically enhanced techniques. Accordingly, this work aims to provide in a single document a rational comparison of outstanding strategies to remove lithium from aqueous sources. To this end, practical figures of merit of both main groups of techniques are provided. An absence of a common experimental protocol and the resulting variability of data and experimental methods are identified. The need for a shared methodology and a common agreement to report performance metrics are underlined.


Assuntos
Lítio , Água , Fontes de Energia Elétrica , Técnicas Eletroquímicas/métodos , Lítio/química
3.
J Phys Chem Lett ; 13(7): 1734-1741, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35170966

RESUMO

Ionic liquid electrolytes (ILEs) have become popular in various advanced Li-ion battery chemistries because of their high electrochemical and thermal stability and low volatility. However, because of their relatively high viscosity and poor Li+ diffusion, it is thought large concentration gradients form, reducing their rate capability. Herein, we utilize operando Raman microspectroscopy to visualize ILE concentration gradients for the first time. Specifically, using lithium bis(fluorosulfonyl)imide (LiFSI) in N-propyl-N-methylpyrrolidinium FSI, its "apparent" diffusion coefficient, lithium transference number, thermodynamic factor, ionic conductivity, and resistance of charge transfer against lithium metal were isolated. Furthermore, the analysis of these concentration gradients led to insights into the bulk structure of ILEs, which we propose are composed of large, ordered aggregates.

5.
ACS Appl Energy Mater ; 4(5): 4428-4443, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34060544

RESUMO

The spinel LiMn2O4 (LMO) is a promising cathode material for rechargeable Li-ion batteries due to its excellent properties, including cost effectiveness, eco-friendliness, high energy density, and rate capability. The commercial application of LiMn2O4 is limited by its fast capacity fading during cycling, which lowers the electrochemical performance. In the present work, phase-pure and crystalline LiMn2O4 spinel in the nanoscale were synthesized using single flame spray pyrolysis via screening 16 different precursor-solvent combinations. To overcome the drawback of capacity fading, LiMn2O4 was homogeneously mixed with different percentages of AlPO4 using versatile multiple flame sprays. The mixing was realized by producing AlPO4 and LiMn2O4 aerosol streams in two independent flames placed at 20° to the vertical axis. The structural and morphological analyses by X-ray diffraction indicated the formation of a pure LMO phase and/or AlPO4-mixed LiMn2O4. Electrochemical analysis indicated that LMO nanoparticles of 17.8 nm (d BET) had the best electrochemical performance among the pure LMOs with an initial capacity and a capacity retention of 111.4 mA h g-1 and 88% after 100 cycles, respectively. A further increase in the capacity retention to 93% and an outstanding initial capacity of 116.1 mA h g-1 were acquired for 1% AlPO4.

6.
Sci Rep ; 11(1): 1362, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446729

RESUMO

Dynamic impedance spectroscopy is one of the most powerful techniques in the qualitative and quantitative mechanistic studies of electrochemical systems, as it allows for time-resolved investigation and dissection of various physicochemical processes occurring at different time scales. However, due to high-frequency artefacts connected to the non-ideal behaviour of the instrumental setup, dynamic impedance spectra can lead to wrong interpretation and/or extraction of wrong kinetic parameters. These artefacts arise from the non-ideal behaviour of the voltage and current amplifier (I/E converters) and stray capacitance. In this paper, a method for the estimation and correction of high-frequency artefacts arising from non-ideal behaviour of instrumental setup will be discussed. Using resistors, [Formula: see text] redox couple and nickel hexacyanoferrate nanoparticles, the effect of high-frequency artefacts will be investigated and the extraction of the impedance of the system from the measured dynamic impedance is proposed. It is shown that the correction allows acquiring proper dynamic impedance spectra at frequencies higher than the bandwidth of the potentiostat, and simultaneously acquire high precision cyclic voltammetry.

7.
ChemSusChem ; 13(20): 5460-5467, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32833306

RESUMO

The efficient production of energy from low-temperature heat sources (below 100 °C) would open the doors to the exploitation of a huge amount of heat sources such as solar, geothermal, and industrial waste heat. Thermal regenerable redox-flow batteries (TRBs) are flow batteries that store energy in concentration cells that can be recharged by distillation at temperature <100 °C, exploiting low-temperature heat sources. Using a single membrane cell setup and a suitable redox couple (LiBr/Br2 ), a TRB has been developed that is able to store a maximum volumetric energy of 25.5 Wh dm-3 , which can be delivered at a power density of 8 W m-2 . After discharging 30 % of the volumetric energy, a total heat-to-electrical energy conversion efficiency of 4 % is calculated, the highest value reported so far in harvesting of low-temperature heat.

8.
Phys Chem Chem Phys ; 22(16): 8768-8780, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32285064

RESUMO

The mechanism of the hydrogen evolution reaction, although intensively studied for more than a century, remains a fundamental scientific challenge. Many important questions are still open, making it elusive to establish rational principles for electrocatalyst design. In this work, a comprehensive investigation was conducted to identify which dynamic phenomena at the electrified interface are prerequisite for the formation of molecular hydrogen. In fact, what we observe as an onset of the macroscopic faradaic current originates from dynamic structural changes in the double layer, which are entropic in nature. Based on careful analysis of the activation process, an electrocatalytic descriptor is introduced, evaluated and experimentally confirmed. The catalytic activity descriptor is named as the potential of minimum entropy. The experimentally verified catalytic descriptor reveals significant potential to yield innovative insights for the design of catalytically active materials and interfaces.

9.
Adv Mater ; 32(23): e1905440, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32307755

RESUMO

Due to the ubiquitous presence of lithium-ion batteries in portable applications, and their implementation in the transportation and large-scale energy sectors, the future cost and availability of lithium is currently under debate. Lithium demand is expected to grow in the near future, up to 900 ktons per year in 2025. Lithium utilization would depend on a strong increase in production. However, the currently most extended lithium extraction method, the lime-soda evaporation process, requires a period of time in the range of 1-2 years and depends on weather conditions. The actual global production of lithium by this technology will soon be far exceeded by market demand. Alternative production methods have recently attracted great attention. Among them, electrochemical lithium recovery, based on electrochemical ion-pumping technology, offers higher capacity production, it does not require the use of chemicals for the regeneration of the materials, reduces the consumption of water and the production of chemical wastes, and allows the production rate to be controlled, attending to the market demand. Here, this technology is analyzed with a special focus on the methodology, materials employed, and reactor designs. The state-of-the-art is reevaluated from a critical perspective and the viability of the different proposed methodologies analyzed.

10.
Chemistry ; 26(22): 4917-4922, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31782839

RESUMO

The structural changes of copper hexacyanoferrate (CuHCF), a Prussian blue analogue, which occur when used as a cathode in an aqueous Zn-ion battery, are investigated using electron microscopy techniques. The evolution of Znx Cu1-x HCF phases possessing wire and cubic morphologies from initial CuHCF nanoparticles are monitored after hundreds of cycles. Irreversible introduction of Zn ions to CuHCF is revealed locally using scanning transmission electron microscopy. A substitution mechanism is proposed to explain the increasing Zn content within the cathode material while simultaneously the Cu content is lowered during Zn-ion battery cycling. The present study demonstrates that the irreversible introduction of Zn ions is responsible for the decreasing Zn ion capacity of the CuHCF cathode in high electrolyte concentration.

11.
ACS Appl Mater Interfaces ; 11(12): 11999-12007, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30821956

RESUMO

Composites consisting of garnet-type Li7La3Zr2O12 (LLZO) ceramic particles dispersed in a solid polymer electrolyte based on poly(ethylene oxide) (PEO) have recently been investigated as a possible electrolyte material in all solid state Li ion batteries. The interface between the two materials, that is, LLZO/PEO, is of special interest for the transport of lithium ions in the composite. For obtaining the desired high ionic conductivity, Li+ ions have to pass easily across this interface. However, previous research found that the interface is highly resistive. Here, we further investigate the interface between Al-substituted LLZO and PEO-LiClO4 electrolytes in the frame of a theoretical description, which is based on space-charge layers. By theoretical calculations supported by experiments, we find that the interface is highly resistive. From the results, we have deduced that the highest contribution to this resistance comes from a high activation energy and not from electrostatic repulsion of lithium.

12.
ChemElectroChem ; 6(21): 5387-5395, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31894198

RESUMO

Dynamic multi-frequency analysis (DMFA) is capable of acquiring high-quality frequency response of electrochemical systems under non-stationary conditions in a broad range of frequencies. In this work, we used DMFA to study the kinetics of (de-)intercalation of univalent cations (Na+ and K+) in thin films of nickel hexacyanoferrate (NiHCF) during cyclic voltammetry. For this system, the classic stationary electrochemical impedance spectroscopy fails due to the instability of the oxidized form of NiHCF. We are showing that such spectra can be fitted with a physical model described by a simple two-step intercalation mechanism: an adsorption step followed by an insertion step. The extracted kinetic parameters are depending on the state of charge as well on the nature of the inserted cation.

13.
Nanotechnology ; 29(3): 035404, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29186000

RESUMO

The crystal orientation and morphology of sputtered LiMn2O4 thin films is strongly affected by the current collector. By substituting Pt with Au, it is possible to observe in the x-ray diffraction pattern of LiMn2O4 a change in the preferential orientation of the grains from (111) to (400). In addition, LiMn2O4 thin films deposited on Au show a higher porosity than films deposited on Pt. These structural differences cause an improvement in the electrochemical performances of the thin films deposited on Au, with up to 50% more specific charge. Aqueous cells using thin film based on LiMn2O4 sputtered on Au or Pt as the cathode electrode present a similar retention of specific charge, delivering 85% and 100%, respectively, of the initial values after 100 cycles. The critical role of the nature of the substrate used in the morphology and electrochemical behaviour observed could permit the exploration of similar effects for other lithium intercalation electrodes.

14.
Phys Chem Chem Phys ; 19(41): 28381-28387, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29034947

RESUMO

High voltage operating active materials are among the most promising components for positive electrodes of future high energy lithium-ion batteries. However, the operating potential range of such materials often exceeds anodically the thermodynamic stability window of the electrolyte. A surface layer is therefore formed, which is supposed to be one of the reasons for the high irreversible charge loss of these electrodes. The electronic character of such a surface layer formed at the electrode/electrolyte interface of LiNi0.5Mn1.5O4 (LNM), stoichiometric (x = 0) and overlithiated (x = 0.1) Li1+x(Ni1/3Mn1/3Co1/3)1-xO2 (NMC) based paste electrodes was investigated in situ using feedback-mode scanning electrochemical microscopy (SECM). The role in the formation of an electronically insulating layer of a conductive carbon additive-based electrode and of the Al current collector was explored as well. The surface layers formed on all oxide based paste electrodes and on conductive carbon additive based electrodes showed unexpectedly an electronic conducting behavior, while the Al current collector formed an electronically insulating layer which was found to be influenced by the electrolyte.

15.
Chemphyschem ; 18(8): 917-925, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28121059

RESUMO

Reversible mixed-ion intercalation in nonselective host structures has promising applications in desalination, mixed-ion batteries, wastewater treatment, and lithium recovery through electrochemical ion pumping. One class of host compound that possesses many of the requirements needed for such applications (cost effectiveness, fast ion kinetics, and stability in an aqueous medium) includes the Prussian blue derivatives. Herein, the fundamental process of intercalation of multiple cations is studied at the thermodynamic level by means of galvanostatic cycling. Nickel hexacyanoferrate is focused upon because of its stability and low potential for electrochemical process relative to other hexacyanoferrates. Various cations can be intercalated; large cations (K+ and NH4+ ) are intercalated at higher potentials than those of smaller cations (Na+ ). When mixtures of cations are present in solution, the potential profile is not qualitatively altered with respect to single-salt solutions, but the potential of (de-)intercalation is shifted; a simple thermodynamic model is introducted that is able to predict the potential and distribution at which intercalation takes place.

16.
ACS Appl Mater Interfaces ; 9(3): 3123-3130, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28036171

RESUMO

The high (de)lithiation potential of TiO2 (ca. 1.7 V vs Li/Li+ in 1 M Li+) decreases the voltage and, thus, the energy density of a corresponding Li-ion battery. On the other hand, it offers several advantages such as the (de)lithiation potential far from lithium deposition or absence of a solid electrolyte interphase (SEI). The latter is currently under controversial debate as several studies reported the presence of a SEI when operating TiO2 electrodes at potentials above 1.0 V vs Li/Li+. We investigate the formation of a SEI at anatase TiO2 electrodes by means of X-ray photoemission spectroscopy (XPS) and scanning electrochemical microscopy (SECM). The investigations were performed in different potential ranges, namely, during storage (without external polarization), between 3.0-2.0 V and 3.0-1.0 V vs Li/Li+, respectively. No SEI is formed when a completely dried and residues-free TiO2 electrode is cycled between 3.0 and 2.0 V vs Li/Li+. A SEI is detected by XPS in the case of samples stored for 6 weeks or cycled between 3.0 and 1.0 V vs Li/Li+. With use of SECM, it is verified that this SEI does not possess the electrically insulating character as expected for a "classic" SEI. Therefore, we propose the term apparent SEI for TiO2 electrodes to differentiate it from the protecting and effective SEI formed at graphite electrodes.

17.
Anal Chem ; 88(16): 7916-20, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27439309

RESUMO

Understanding the gas evolution in batteries, caused by decomposition of the electrolyte, is of fundamental importance for improving the long-time performances and cycle life of the battery systems. In general, this phenomenon causes simultaneously an irreversible energy and charge loss, as well as an increase of the internal resistance. Here, we introduce a new cell design capable of performing electrochemical impedance spectroscopy (EIS) and differential electrochemical mass spectroscopy (DEMS) with high resolution. Detailed aspects of the cell fabrication and the different components of the cell are extensively explained. Impedance measurements were validated by using symmetric electrodes. The possibility of performing long-term DEMS measurements was tested on graphite electrodes in Ethylene Carbonate/Dimethyl Carbonate (1:1), 1 M LiPF6 as an electrolyte. Finally, the cell was used to detect hydrogen evolution on the zinc negative electrode of a zinc-ion battery based on copper hexacyanoferrate.

18.
J Phys Condens Matter ; 28(11): 114005, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26910577

RESUMO

Currently, lithium carbonate is mainly produced through evaporation of lithium-rich brines, which are located in South American countries such as Bolivia, Chile, and Argentina. The most commonly used process, the lime-soda evaporation, requires a long time and several purification steps, which produces a considerable amount of chemical waste. Recently, several alternative electrochemical methods, based on LiFePO4 as a selective lithium capturing electrode and differing for the reaction at the counter electrode, have been proposed. In this work a comparison between the salt capturing method, based on silver / silver chloride reaction, and the selective exchange method, based on ion intercalation reaction in a Prussian Blue derivative, is performed in terms of energy consumption. In particular, the energy consumption is divided in thermodynamic and kinetic contribution, and the theoretical calculations are compared with the experimental results. The experimental results show a good agreement with the theoretical calculation. The selective exchange method shows superior performances to the salt exchange in terms of purity and efficiency, however the energy consumption is higher.

19.
Top Curr Chem ; 371: 253-324, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26267386

RESUMO

In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials.

20.
Angew Chem Int Ed Engl ; 54(50): 15064-8, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26487262

RESUMO

Highly reproducible and fast potential-assisted immobilization of single-stranded (ss)DNA on gold surfaces is achieved by applying a pulse-type potential modulation. The desired DNA coverage can be obtained in a highly reproducible way within minutes. Understanding the underlying processes occurring during potential-assisted ssDNA immobilization is crucial. We propose a model that considers the role of ions surrounding the DNA strands, the distance dependence of the applied potentials within the electrolyte solution, and most importantly the shift of the potential of zero charge during the immobilization due to the surface modification with DNA. The control of the surface coverage of ssDNA as well as the achieved speed and high reproducibility are seen as prerequisites for improved DNA-based bioassays.


Assuntos
DNA de Cadeia Simples/química , DNA de Cadeia Simples/síntese química , Ácidos Nucleicos Imobilizados/química , Ouro/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...