Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 11: 578537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488390

RESUMO

The analysis of human brain functional networks is achieved by computing functional connectivity indices reflecting phase coupling and interactions between remote brain regions. In magneto- and electroencephalography, the most frequently used functional connectivity indices are constructed based on Fourier-based cross-spectral estimation applied to specific fast and band-limited oscillatory regimes. Recently, infraslow arrhythmic fluctuations (below the 1 Hz) were recognized as playing a leading role in spontaneous brain activity. The present work aims to propose to assess functional connectivity from fractal dynamics, thus extending the assessment of functional connectivity to the infraslow arrhythmic or scale-free temporal dynamics of M/EEG-quantified brain activity. Instead of being based on Fourier analysis, new Imaginary Coherence and weighted Phase Lag indices are constructed from complex-wavelet representations. Their performances are first assessed on synthetic data by means of Monte-Carlo simulations, and they are then compared favorably against the classical Fourier-based indices. These new assessments of functional connectivity indices are also applied to MEG data collected on 36 individuals both at rest and during the learning of a visual motion discrimination task. They demonstrate a higher statistical sensitivity, compared to their Fourier counterparts, in capturing significant and relevant functional interactions in the infraslow regime and modulations from rest to task. Notably, the consistent overall increase in functional connectivity assessed from fractal dynamics from rest to task correlated with a change in temporal dynamics as well as with improved performance in task completion, which suggests that the complex-wavelet weighted Phase Lag index is the sole index is able to capture brain plasticity in the infraslow scale-free regime.

2.
Neuroimage ; 206: 116313, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676416

RESUMO

Our perceptual reality relies on inferences about the causal structure of the world given by multiple sensory inputs. In ecological settings, multisensory events that cohere in time and space benefit inferential processes: hearing and seeing a speaker enhances speech comprehension, and the acoustic changes of flapping wings naturally pace the motion of a flock of birds. Here, we asked how a few minutes of (multi)sensory training could shape cortical interactions in a subsequent unisensory perceptual task. For this, we investigated oscillatory activity and functional connectivity as a function of individuals' sensory history during training. Human participants performed a visual motion coherence discrimination task while being recorded with magnetoencephalography. Three groups of participants performed the same task with visual stimuli only, while listening to acoustic textures temporally comodulated with the strength of visual motion coherence, or with auditory noise uncorrelated with visual motion. The functional connectivity patterns before and after training were contrasted to resting-state networks to assess the variability of common task-relevant networks, and the emergence of new functional interactions as a function of sensory history. One major finding is the emergence of a large-scale synchronization in the high γ (gamma: 60-120Hz) and ß (beta: 15-30Hz) bands for individuals who underwent comodulated multisensory training. The post-training network involved prefrontal, parietal, and visual cortices. Our results suggest that the integration of evidence and decision-making strategies become more efficient following congruent multisensory training through plasticity in network routing and oscillatory regimes.


Assuntos
Percepção Auditiva/fisiologia , Ritmo beta/fisiologia , Encéfalo/fisiologia , Ritmo Gama/fisiologia , Percepção de Movimento/fisiologia , Estimulação Acústica , Adolescente , Adulto , Feminino , Humanos , Magnetoencefalografia , Masculino , Lobo Parietal/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/fisiologia , Córtex Visual/fisiologia , Adulto Jovem
3.
J Neurosci Methods ; 309: 175-187, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30213548

RESUMO

BACKGROUND: The temporal structure of macroscopic brain activity displays both oscillatory and scale-free dynamics. While the functional relevance of neural oscillations has been largely investigated, both the nature and the role of scale-free dynamics in brain processing have been disputed. NEW METHOD: Here, we offer a novel method to rigorously enrich the characterization of scale-free brain activity using a robust wavelet-based assessment of self-similarity and multifractality. For this, we analyzed human brain activity recorded with magnetoencephalography (MEG) while participants were at rest or performing a visual motion discrimination task. RESULTS: First, we report consistent infraslow (from 0.1 to 1.5 Hz) scale-free dynamics (i.e., self-similarity and multifractality) in resting-state and task data. Second, we observed a fronto-occipital gradient of self-similarity reminiscent of the known hierarchy of temporal scales from sensory to higher-order cortices; the anatomical gradient was more pronounced in task than in rest. Third, we observed a significant increase of multifractality during task as compared to rest. Additionally, the decrease in self-similarity and the increase in multifractality from rest to task were negatively correlated in regions involved in the task, suggesting a shift from structured global temporal dynamics in resting-state to locally bursty and non Gaussian scale-free structures during task. COMPARISON WITH EXISTING METHOD(S): We showed that the wavelet leader based multifractal approach extends power spectrum estimation methods in the way of characterizing finely scale-free brain dynamics. CONCLUSIONS: Altogether, our approach provides novel fine-grained characterizations of scale-free dynamics in human brain activity.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Análise de Ondaletas , Adulto , Discriminação Psicológica/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Percepção de Movimento/fisiologia , Adulto Jovem
4.
Anat Rec (Hoboken) ; 292(12): 2023-31, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19943355

RESUMO

Synchronous brain activity in motor cortex in perception or in complex cognitive processing has been the subject of several studies. The advanced analysis of cerebral electro-physiological activity during the course of planning (PRE) or execution of movement (EXE) in a high temporal resolution could reveal interesting information about the brain functional organization in patients following stroke damage. High-power (128 channels) electroencephalography registration was carried out on 8 healthy subjects and on a patient with stroke with capsular lacuna in the right hemisphere. For activation of motor cortex, the finger tapping paradigm was used. In this preliminary study, we tested a theoretical graph approach to characterize the task-related spectral coherence. All of the obtained brain functional networks were analyzed by the connectivity degree, the degree distribution, and efficiency parameters in the Theta, Alpha, Beta, and Gamma bands during the PRE and EXE intervals. All the brain networks were found to hold a regular and ordered topology. However, significant differences (P < 0.01) emerged between the patient with stroke and the control subjects, independently of the neural processes related to the PRE or EXE periods. In the Beta (13-29 Hz) and Gamma (30-40 Hz) bands, the significant (P < 0.01) decrease in global- and local-efficiency in the patient's networks, reflected a lower capacity to integrate communication between distant brain regions and a lower tendency to be modular. This weak organization is principally due to the significant (P < 0.01 Bonferroni corrected) increase in disconnected nodes together with the significant increase in the links in some other crucial vertices.


Assuntos
Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Infarto Encefálico/fisiopatologia , Cognição/fisiologia , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Função Executiva/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/anatomia & histologia , Movimento/fisiologia , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/fisiopatologia , Rede Nervosa/anatomia & histologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Projetos Piloto , Valor Preditivo dos Testes , Valores de Referência , Processamento de Sinais Assistido por Computador , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...